Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Siqi Zhang, H L Xing, David A Yue, Huai Zhang, Yaolin Shi. Regional Stress Fields under Tibet from 3D Global Flow Simulation. Journal of Earth Science, 2011, 22(2): 155-159. doi: 10.1007/s12583-011-0167-8
Citation: Siqi Zhang, H L Xing, David A Yue, Huai Zhang, Yaolin Shi. Regional Stress Fields under Tibet from 3D Global Flow Simulation. Journal of Earth Science, 2011, 22(2): 155-159. doi: 10.1007/s12583-011-0167-8

Regional Stress Fields under Tibet from 3D Global Flow Simulation

doi: 10.1007/s12583-011-0167-8
Funds:

the National Natural Science Foundation of China 90814014

the National Natural Science Foundation of China 40728004

the National Science and Technology Project SinoProbe-07

the Visiting Senior Professorship from the Chinese Academy of Sciences 

the CMG Program from the U.S. National Science Foundation 

More Information
  • Corresponding author: Siqi Zhang, zhangsiqi06@mails.gucas.ac.cn
  • Received Date: 22 Sep 2010
  • Accepted Date: 14 Nov 2010
  • Publish Date: 01 Apr 2011
  • Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.

     

  • loading
  • Bai, W. M., Vigny, C., Ricard, Y., et al., 1992. On the Origin of Deviatoric Stresses in the Lithosphere. Journal of Geophysical Research, 97(B8): 11729–11737 doi: 10.1029/91JB00292
    Becker, T. W., 2006. On the Effect of Temperature and Strain-Rate Dependent Viscosity on Global Mantle Flow, Net Rotation, and Plate-Driving Forces. Geophysical Journal International, 167(2): 943–957 doi: 10.1111/j.1365-246X.2006.03172.x
    CIG. http://www.geodynamics.org/
    DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425–478 doi: 10.1111/j.1365-246X.1990.tb06579.x
    Fay, N. P., Bennett, R. A., Spinler, J. C., et al., 2008. Small-Scale Upper Mantle Convection and Crustal Dynamics in Southern California. Geochemistry, Geophysics, Geosystems, 9(8): Q08006
    Goes, S., Govers, R., Vacher, P., 2000. Shallow Mantle Temperatures under Europe from P and S Wave Tomography. Journal of Geophysical Research, 105(B5): 11153–11169 doi: 10.1029/1999JB900300
    Hager, B. H., Clayton, R. W., 1989. Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid. In: Peltier, W. R., ed., The Fluid Mechanics of Astrophysics and Geophysics. Gordon and Breach Science Publishers, New York. 4: 657–763
    Liu, M., Yang, Y. Q., 2003. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling. Journal of Geophysical Research, 108(B8): 2361
    Ritsema, J., van Heijst, H. J., Woodhouse, J. H., 1999. Complex Shear Wave Velocity Structure Imaged beneath Africa and Iceland. Science, 286(5446): 1925–1928 doi: 10.1126/science.286.5446.1925
    Spasojevic, S., Liu, L. J., Gurnis, M., 2009. Adjoint Models of Mantle Convection with Seismic, Plate Motion, and Stratigraphic Constraints: North America since the Late Cretaceous. Geochemistry, Geophysics, Geosystems, 10(5): Q05W02
    Steinberger, B., Schmeling, H., Marquart, G., 2001. Large-Scale Lithospheric Stress Field and Topography Induced by Global Mantle Circulation. Earth and Planetary Science Letters, 186(1): 75–91 doi: 10.1016/S0012-821X(01)00229-1
    Tan, E., Choi, E., Thoutireddy, P., et al., 2006. GeoFramework: Coupling Multiple Models of Mantle Convection within a Computational Framework. Geochemistry, Geophysics, Geosystems, 7(6): Q06001
    Trampert, J., Vacher, P., Vlaar, N., 2001. Sensitivities of Seismic Velocities to Temperature, Pressure and Composition in the Lower Mantle. Physics of the Earth and Planetary Interiors, 124(3–4): 255–267
    Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. 188
    Wang, Q., Zhang, P. Z., Freymueller, J. T., et al., 2001. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 294(5542): 574–577 doi: 10.1126/science.1063647
    Zhong, S. J., McNamara, A., Tan, E., et al., 2008. A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10): Q10017
    Zhong, S. J., Zuber, M. T., Moresi, L., et al., 2000. Role of Temperature-Dependent Viscosity and Surface Plates in Spherical Shell Models of Mantle Convection. Journal of Geophysical Research, 105(B5): 11063–11082 doi: 10.1029/2000JB900003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(586) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return