Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Li Li, Donald J. Weidner, John Brodholt, Dario Alfè, G David Price. Ab Initio Molecular Dynamic Simulation on the Elasticity of Mg3Al2Si3O12 Pyrope. Journal of Earth Science, 2011, 22(2): 169-175. doi: 10.1007/s12583-011-0169-6
Citation: Li Li, Donald J. Weidner, John Brodholt, Dario Alfè, G David Price. Ab Initio Molecular Dynamic Simulation on the Elasticity of Mg3Al2Si3O12 Pyrope. Journal of Earth Science, 2011, 22(2): 169-175. doi: 10.1007/s12583-011-0169-6

Ab Initio Molecular Dynamic Simulation on the Elasticity of Mg3Al2Si3O12 Pyrope

doi: 10.1007/s12583-011-0169-6
Funds:

the US NSF EAR0809397

NERC NER/T/S/2001/00855

NERC NER/O/S/2001/01227

computer facilities provided by NERC at University College London, and the UK National Supercomputing Service (Hector) 

More Information
  • Corresponding author: Li Li, lilli@ic.sunysb.edu
  • Received Date: 11 Aug 2010
  • Accepted Date: 12 Nov 2010
  • Publish Date: 01 Apr 2011
  • We calculated thermo-elastic properties of pyrope (Mg3Al2Si3O12) at mantle pressures and temperatures using Ab initio molecular dynamic simulation. A third-order Birch-Murnaghan equation at a reference temperature of 2 000 K fits the calculations with bulk modulus, K0=159.5 GPa, K0′=4.3, V0=785.89 Å3, Grüneisen parameter, γ0=1.15, q=0.80, Anderson Grüneisen parameter δT =3.76 and thermal expansion, α0=2.93×10−5 K−1. Referenced to room temperature, where V0=750.80 Å3, γ0 and α0 become 1.11 and 2.47×10−5 K−1. The elastic properties of pyrope are found to be nearly isotropic at transition zone conditions.

     

  • loading
  • Alfè, D., 1999. Ab Initio Molecular Dynamics, a Simple Algorithm for Charge Extrapolation. Computer Physics Communications, 118(1): 31–33 doi: 10.1016/S0010-4655(98)00195-7
    Allen, M. P., Tildesley, D. J., 1997. Computer Simulation of Liquids. Oxford University Press, New York. 408
    Bina, C. R., Helffrich, G. R., 1992. Calculation of Elastic Properties from Thermodynamic Equation of State Principles. Annu. Rev. Earth Planet. Sci. , 20: 527–552 doi: 10.1146/annurev.ea.20.050192.002523
    Blöchl, P. E., 1994. Projector Augmented-Wave Method. Phys. Rev. B, 50(24): 17953–17979 doi: 10.1103/PhysRevB.50.17953
    Brown, J. M., Shankland, T. J., 1981. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles. Geophys. J. R. Astr. Soc. , 66(3): 579–596 doi: 10.1111/j.1365-246X.1981.tb04891.x
    Chen, G. L., Cooke, J. A., Gwanmesia, G. D., et al., 1999. Elastic Wave Velocities at Mg3Al2Si3O13—Pyrope Garnet to 10 GPa. American Mineralogist, 84(3): 384–388 doi: 10.2138/am-1999-0322
    Conrad, P. G., Zha, C. S., Mao, H. K., et al., 1999. The High-Pressure, Single-Crystal Elasticity of Pyrope, Grossular, and Andradite. American Mineralogist, 84(3): 374–383 doi: 10.2138/am-1999-0321
    Deuss, A., Woodhouse, J., 2001. Seismic Observations of Splitting of the Mid-transition Zone Discontinuity in Earth's Mantle. Science, 294(5541): 354–357 doi: 10.1126/science.1063524
    Fisher, K. M., Wiens, D. A., 1996. The Depth Distribution of Mantle Anisotropy beneath the Tonga Subduction Zone. Earth and Planetary Science Letters, 142(1–2): 253–260
    Gossler, J., Kind, R., 1996. Seismic Evidence for very Deep Roots of Continents. Earth and Planetary Science Letters, 138(1–4): 1–13
    Gu, Y., Dziewonski, A. M., Agee, C. B., 1998. Global De-correlation of the Topography of Transition Zone Discontinuities. Earth and Planetary Science Letters, 157(1–2): 57–67
    Gwanmesia, G. D., Zhang, J., Darling, K., et al., 2006. Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1 000 ℃. Physics of the Earth and Planetary Interiors, 155(3–4): 179–190
    Kresse, G., Furthmüller, J., 1996a. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci. , 6(1): 15–50 doi: 10.1016/0927-0256(96)00008-0
    Kresse, G., Furthmüller, J., 1996b. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B, 54(16): 11169–11186 doi: 10.1103/PhysRevB.54.11169
    Leitner, B. J., Weidner, D. J., Liebermann, R. C., 1980. Elasticity of Single Crystal Pyrope and Implications for Garnet Solid Solution Series. Physics of the Earth and Planetary Interiors, 22(2): 111–121 doi: 10.1016/0031-9201(80)90052-7
    Li, L., Weidner, D. J., 2008. Effect of Phase Transitions on Bulk Dispersion and Attenuation: Implications for the Earth. Nature, 454: 984–986 doi: 10.1038/nature07230
    Li, L., Weidner, D. J., Brodholt, J., et al., 2005. Phase Stability of CaSiO3 Perovskite at High Pressure and Temperature: Insights from Ab Initio Molecular Dynamics. Physics of the Earth and Planetary Interiors, 155(3–4): 260–268
    Li, L., Weidner, D. J., Brodholt, J., et al., 2006a. Elasticity of Mg2SiO4 Ringwoodite at Mantle Conditions. Physics of the Earth and Planetary Interiors, 157(3–4): 181–187
    Li, L., Weidner, D. J., Brodholt, J., et al., 2006b. Elasticity of CaSiO3 Perovskite at High Pressure and High Temperature. Physics of the Earth and Planetary Interiors, 155(3–4): 249–259
    Li, L., Weidner, D. J., Brodholt, J., et al., 2009. Ab Initio Molecular Dynamics Study of Elasticity of Akimotoite MgSiO3 at Mantle Conditions. Physics of the Earth and Planetary Interiors, 173(1–2): 115–120
    Mittal, R., Chaplot, S. L., Choudhury, N., 2001. Lattice Dynamics Calculations of the Phonon Spectra and Thermodynamic Properties of the Aluminosilicate Garnets Pyrope, Grossular, and Spessartine M3Al2Si3O12 (M=Mg, Ca, and Mn). Phys. Rev. B, 64(9): 094302 doi: 10.1103/PhysRevB.64.094302
    Montagner, J. P., Kennett, B. L. N., 1996. How to Reconcile Body-Wave and Normal Mode—Reference Earth Models. Geophys. J. Int. , 125(1): 229–248 doi: 10.1111/j.1365-246X.1996.tb06548.x
    Nye, J. F., 1957. Physical Properties of Crystals. Oxford University Press, Ely House, London
    Oganov, A. R., Brodholt, J. P., Price, G. D., 2001a. Ab Initio Elasticity and Thermal Equation of State of MgSiO3 Perovskite. Earth and Planetary Science Letters, 184(3–4): 555–560
    Oganov, A. R., Brodholt, J. P., Price, G. D., 2001b. The Elastic Constants of MgSiO3 Perovskite at Pressures and Temperatures of the Earth's Mantle. Nature, 411(6840): 934–937 doi: 10.1038/35082048
    Pavese, A., 1999. Quasi-harmonic Computer Simulations of the Structural Behaviour and EOS of Pyrope at High Pressure and High Temperature. Phys. Chem. Minerals, 26(8): 649–657 doi: 10.1007/s002690050230
    Perdew, J. P., Chevary, J. A., Vosko, S. H., et al., 1992. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B, 46(11): 6671–6687 doi: 10.1103/PhysRevB.46.6671
    Revenaugh, J., Jordan, T. H., 1991. The ScS Phase in the Reflection of S-Waves from the Core-Mantle Boundary. Journal of Geophysical Research-Solid Earth, 96(B12): 19763–19780 doi: 10.1029/91JB01486
    Shearer, P. M., 1990. Seismic Imaging of Upper-Mantle Structure with New Evidence for a 520-km Discontinuity. Nature, 344(6262): 121–126 doi: 10.1038/344121a0
    Sinogeikin, S. V., Bass, J. D., 2000. Single-Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Physics of the Earth and Planetary Interiors, 120(1–2): 43–62
    Sinogeikin, S. V., Bass, J. D., 2002. Elasticity of Pyrope and Majorite-Pyrope Solid Solutions to High Temperatures. Earth and Planetary Science Letters, 203(1): 549–555 doi: 10.1016/S0012-821X(02)00851-8
    Stackhouse, S., Brodholt, J. P., Wookey, J., et al., 2004. The Effect of Temperature on the Seismic Anisotropy of the Perovskite and Post-Perovskite Polymorphs of MgSiO3. Earth and Planetary Science Letters, 230(1–2): 1–10
    Wang, Y., Perdew, J. P., 1991. Correlation Hole of the Spin-Polarized Electron-Gas, with Exact Small-Wave-Vector and High Density Scaling. Phy. Rev. B, 44(24): 13298–13307 doi: 10.1103/PhysRevB.44.13298
    Wang, Y., Weidner, D. J., Zhang, J. Z., et al., 1998. Thermal Equation of State of Garnets along the Pyrope-Majorite Join. Physics of the Earth and Planetary Interiors, 105(1–2): 59–71
    Zhang, J., Herzberg, C., 1994. Melting of Pyrope, Mg3Al2Si3O12, at 7–16 GPa. American Mineralogist, 79(5–6): 497–503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views(500) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return