Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Shuangxi Zhang, Mengkui Li. Influence of Uneven Trace Spacing on Rayleigh Wave Dispersion. Journal of Earth Science, 2011, 22(2): 231-240. doi: 10.1007/s12583-011-0176-7
Citation: Shuangxi Zhang, Mengkui Li. Influence of Uneven Trace Spacing on Rayleigh Wave Dispersion. Journal of Earth Science, 2011, 22(2): 231-240. doi: 10.1007/s12583-011-0176-7

Influence of Uneven Trace Spacing on Rayleigh Wave Dispersion

doi: 10.1007/s12583-011-0176-7
More Information
  • Corresponding author: Shuangxi ZHANG, shxzhang@sgg.whu.edu.cn
  • Received Date: 30 Aug 2010
  • Accepted Date: 05 Jan 2011
  • Publish Date: 01 Apr 2011
  • Rayleigh wave dispersion signals are significant to underground investigation. Traditionally, uniformed trace spacing is employed in surface wave surveys. In some cases, however, uneven trace spacing is often encountered because of the limitations of the site condition. In order to study the influence of uneven trace spacing on the dispersion data construction of Rayleigh waves, data acquisition is performed based on a 2.5D field layout with a linear array of geophones fixed and a mobile source. The observation direction controls the trace spacing of the measurement. The final results demonstrate that the trace nonuniformity has significant influence on the Rayleigh wave dispersion feature constructed. When the observation angle is over 45°, the dispersion image will be too distorted to extract dispersion data correctly.

     

  • loading
  • Ashiya, K., Yoshioka, O., Yokoyama, H., 1999. Estimation of Phase Velocities of Multiple Modes by Inversion of Frequency-Wave Number Spectrum and Its Application to Train Induced Ground Vibrations. Geophysical Exploration, 52(3): 214–226
    Asten, M. W., Henstridge, J. D., 1984. Array Estimators and the Use of Microseisms for Reconnaissance of Sedimentary Basins. Geophysics, 49(11): 1828–1837 doi: 10.1190/1.1441596
    Bodet, L., van Wijk, K., Bitri, A., et al., 2005. Surface-Wave Inversion Limitations from Laser-Doppler Physical Modeling. J. Environ. Eng. Geophys. , 10(2): 151–162 doi: 10.2113/JEEG10.2.151
    Bodet, L., Abraham, O., Clorennec, D., 2009. Near-Offset Effects on Rayleigh-Wave Dispersion Measurements: Physical Modeling. Journal of Applied Geophysics, 68(1): 95–103 doi: 10.1016/j.jappgeo.2009.02.012
    Chen, L. Z., Zhu, J. Y., Yan, X. S., et al., 2004. On Arrangement of Source and Receivers in SASW Testing. Soil Dynamics and Earthquake Engineering, 24(5): 389–396 doi: 10.1016/j.soildyn.2003.12.004
    Forbriger, T., 2003. Inversion of Shallow-Seismic Wavefields: I. Wavefield Transformation. Geophysical Journal International, 153(3): 719–734 doi: 10.1046/j.1365-246X.2003.01929.x
    Horike, M., 1985. Inversion of Phase Velocity of Long-Period Microtremors to the S-Wave-Velocity Structure down to the Basement in Urbanized Areas. J. Phys. Earth, 33(2): 59–96 doi: 10.4294/jpe1952.33.59
    Lin, C. P., Chang, T. S., 2004. Multi-station Analysis of Surface Wave Dispersion. Soil Dynamics and Earthquake Engineering, 24(11): 877–886 doi: 10.1016/j.soildyn.2003.11.011
    Luo, Y. H., Xia, J. H., Miller, R. D., et al., 2009. Rayleigh-Wave Mode Separation by High-Resolution Linear Radon Transform. Geophysical Journal International, 179(1): 254–264 doi: 10.1111/j.1365-246X.2009.04277.x
    Matsushima, T., Okada, H., 1990. Determination of Deep Geological Structures under Urban Areas Using Long-Period Microtremors. Geophysical Exploration, 43(1): 21–33 http://www.researchgate.net/publication/288970971_Determination_of_deep_geological_structures_under_urban_areas_using_long-period_microtremors
    McMechan, G. A., Ottolini, R., 1980. Direct Observation of p-τ-Curve in a Slant Stacked Wave Field. Bull. Seis. Soc. Am. , 70: 775–789 doi: 10.1785/BSSA0700030775
    McMechan, G. A., Yedlin, M. J., 1981. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 46(6): 869–874 doi: 10.1190/1.1441225
    Miller, R. D., Xia, J. H., Park, C. B., et al., 1999. Using MASW to Map Bedrock in Olathe, Kansas. SEG Annual Meeting Expanded Technical Program with Biographies, Houston, Texas. 433–436
    Nazarian, S., Stokoe, K. H., Hudson, W. R., 1983. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems. Transportation Research Record 930, National Research Council, Washington, D.C. . 38–45
    O'Neill, A., 2003. Full-Waveform Reflectivity for Modelling, Inversion and Appraisal of Seismic Surface Wave Dispersion in Shallow Site Investigations: [Dissertation]. The University of Western Australia, School of Earth and Geographical Sciences, Perth, Australia
    Park, C. B., Miller, R. D., Xia, J. H., 1999. Multichannel Analysis of Surface Waves. Geophysics, 64(3): 800–808 doi: 10.1190/1.1444590
    Roesset, J. M., Chang, D. W., Stokoe, K. H. II, et al., 1989. Modulus and Thickness of the Pavement Surface Layer from SASW Tests. Transportation Research Record, 1260: 53–63
    Sánchez-Salinero, I., Roesset, J. M., Shao, K. Y., et al., 1987. Analytical Evaluation of Variables Affecting Surface Wave Testing of Pavements. Transportation Research Record, 1136: 86–95
    Stokoe II, K. H., Nazarian, S., 1983. Effectiveness of Ground Improvement from Spectral Analysis of Surface Waves. Proceeding of the Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Finland
    Xia, J. H., Miller, R. D., Park, C. B., 1999. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves. Geophysics, 64(3): 691–700 doi: 10.1190/1.1444578
    Xia, J. H., Xu, Y. X., Miller, R. D., et al., 2006. Estimation of Elastic Moduli in a Compressible Gibson Half-Space by Inverting Rayleigh Wave Phase Velocity. Surv. Geophys. , 27(1): 1–17 doi: 10.1007/s10712-005-7261-3
    Xia, J. H., Xu, Y. X., Miller, R. D., 2007. Generating an Image of Dispersive Energy by Frequency Decomposition and Slant Stacking. Pure and Applied Geophysics, 164(5): 941–956 doi: 10.1007/s00024-007-0204-9
    Xiong, Z. Q., Fang, G. X., 2002. Shallow Seismic Exploration. Seismological Press, Beijing. 239 (in Chinese)
    Yoon, S., Rix, G. J., 2004. Combined Active-Passive Surface-Wave Measurements for Near Surface Site Characterization. Symposium on the Application of Geophysics to Engineering and Environmental Problems, Proceedings, February 22–26, 2004, Colorado Springs, Colorado
    Yoon, S., Rix, G. J., 2006. Evaluation of Near-Field Effects on Active Surface Wave Measurements with Multiple Receivers. Symposium on the Application of Geophysics to Engineering and Environmental Problems, Proceedings, April 2–6, 2006, Seattle, Washington
    Zhang, S. X., Chan, L. S., Chen, C. Y., et al., 2003. Apparent Phase Velocities and Fundamental-Mode Phase Velocities of Rayleigh Waves. Soil Dynamics and Earthquake Engineering, 23(7): 563–569 doi: 10.1016/S0267-7261(03)00069-1
    Zhang, S. X., Chan, L. S., Xia, J. H., 2004. The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data. Pure and Applied Geophysics, 161(1): 185–201 doi: 10.1007/s00024-003-2428-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(672) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return