Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Aifei Bian, Wenhui Yu. Layer-Stripping Full Waveform Inversion with Damped Seismic Reflection Data. Journal of Earth Science, 2011, 22(2): 241-249. doi: 10.1007/s12583-011-0177-6
Citation: Aifei Bian, Wenhui Yu. Layer-Stripping Full Waveform Inversion with Damped Seismic Reflection Data. Journal of Earth Science, 2011, 22(2): 241-249. doi: 10.1007/s12583-011-0177-6

Layer-Stripping Full Waveform Inversion with Damped Seismic Reflection Data

doi: 10.1007/s12583-011-0177-6
Funds:

the National Natural Science Foundation of China 40774062

More Information
  • Corresponding author: Bian Aifei: baf1981@126.com
  • Received Date: 22 Sep 2010
  • Accepted Date: 14 Jan 2011
  • Publish Date: 01 Apr 2011
  • Full waveform inversion (FWI) directly minimizes errors between synthetic and observed data. For the surface acquisition geometry, reflections generated from deep reflectors are sensitive to overburden structure, so it is reasonable to update the macro velocity model in a top-to-bottom manner. For models dominated by horizontally layered structures, combination of offset/time weighting and constant update depth control (CUDC) is sufficient for layer-stripping FWI. CUDC requires ray tracing to determine reflection traveltimes at a constant depth. As model complexity increases, the multi-path effects will have to be considered. We developed a new layer-stripping FWI method utilizing damped seismic reflection data, which does not need CUDC and ray tracing. Numerical examples show that effective update depth (EUD) can be controlled by damping constants even in complex regions and the inversion result is more accurate than conventional methods.

     

  • loading
  • Amestoy, P. R., Duff, I. S., L'Excellent, J. Y., et al., 2001. Analysis and Comparison of Two General Sparse Solvers for Distributed Memory Computers. ACM Transactions on Mathematical Software, 27(4): 388–421 doi: 10.1145/504210.504212
    Bleibinhaus, F., Lester, R. W., Hole, J. A., 2009. Applying Waveform Inversion to Wide-Angle Seismic Surveys. Tectonophysics, 472(1–4): 238–248
    Boonyasiriwat, C., Valasek, P., Routh, P., et al., 2009. An Efficient Multiscale Method for Time-Domain Waveform Tomography. Geophysics, 74(6): WCC59–WCC68 doi: 10.1190/1.3151869
    Brenders, A. J., Pratt, R. G., 2007. Full Waveform Tomography for Lithospheric Imaging: Results from a Blind Test in a Realistic Crustal Model. Geophysical Journal International, 168(1): 133–151 doi: 10.1111/j.1365-246X.2006.03156.x
    Bube, K. P., Langan, R. T., Resnick, J. R., 1995. Theoretical and Numerical Issues in the Determination of Reflector Depths in Seismic Reflection Tomography. Journal of Geophysical Research, 100(B7): 12449–12458 doi: 10.1029/95JB00920
    Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995. Multiscale Seismic Waveform Inversion. Geophysics, 60(5): 1457–1473 doi: 10.1190/1.1443880
    Ding, J. C., Chang, X., Liu, Y. K., et al., 2007. Layer by Layer Waveform Inversion of Seismic Reflection Data. Chinese J. Geophys. , 50(2): 574–580 (in Chinese with English Abstract)
    Gauthier, O., Virieux, J., Tarantola, A., 1986. Two-Dimensional Nonlinear Inversion of Seismic Waveforms: Numerical Results. Geophysics, 51(7): 1387–1403 doi: 10.1190/1.1442188
    Hustedt, B., Operto, S., Virieux, J., 2004. Mixed-Grid and Staggered-Grid Finite-Difference Methods for Frequency-Domain Acoustic Wave Modelling. Geophysical Journal International, 157(3): 1269–1296 doi: 10.1111/j.1365-246X.2004.02289.x
    Kolb, P., Collino, F., Lailly, P., 1986. Pre-stack Inversion of a 1-D Medium. Proceedings of the IEEE, 74(3): 498–508 doi: 10.1109/PROC.1986.13490
    Lailly, P., 1983. The Seismic Inverse Problem as a Sequence of before Stack Migrations. Conference on Inverse Scattering: Theory and Application. SIAM, Philadelphia. 206–220
    Lambaré, G., 2008. Stereotomography. Geophysics, 73(5): VE25–VE34 doi: 10.1190/1.2952039
    Levander, A. R., 1988. Fourth-Order Finite-Difference P-SV Seismograms. Geophysics, 53(11): 1425–1436 doi: 10.1190/1.1442422
    Luo, Y., Schuster, G., 1990. Parsimonious Staggered Grid Finite-Differencing of the Wave Equation. Geophysical Research Letters, 17(2): 155–158 doi: 10.1029/GL017i002p00155
    Mallick, S., Frazer, N. L., 1987. Practical Aspects of Reflectivity Modeling. Geophysics, 52(10): 1355–1364 doi: 10.1190/1.1442248
    Mora, P., 1987. Nonlinear Two-Dimensional Elastic Inversion of Multioffset Seismic Data. Geophysics, 52(9): 1211–1228 doi: 10.1190/1.1442384
    Pratt, R. G., 1999. Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 64(3): 888–901 doi: 10.1190/1.1444597
    Pratt, R. G., Shin, C., Hicks, G. J., 1998. Gauss-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion. Geophysical Journal International, 133(2): 341–362 doi: 10.1046/j.1365-246X.1998.00498.x
    Pratt, R. G., Worthington, M. H., 1990. Inverse Theory Applied to Multisource Cross-Hole Tomography, Part 1: Acoustic Wave-Equation Method. Geophysical Prospecting, 38(3): 287–310 doi: 10.1111/j.1365-2478.1990.tb01846.x
    Shin, C., Cha, Y. H., 2008. Waveform Inversion in the Laplace Domain. Geophysical Journal International, 173(3): 922–931 doi: 10.1111/j.1365-246X.2008.03768.x
    Shin, C., Cha, Y. H., 2009. Waveform Inversion in the Laplace-Fourier Domain. Geophysical Journal International, 177(3): 1067–1079 doi: 10.1111/j.1365-246X.2009.04102.x
    Shipp, R. M., Singh, S. C., 2002. Two-Dimensional Full Wavefield Inversion of Wide-Aperture Marine Seismic Streamer Data. Geophysical Journal International, 151(2): 325–344 doi: 10.1046/j.1365-246X.2002.01645.x
    Sirgue, L., Pratt, R. G., 2004. Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 69(1): 231–248 doi: 10.1190/1.1649391
    Song, Z. M., Williamson, P. R., Pratt, R. G., 1995. Frequency-Domain Acoustic-Wave Modeling and Inversion of Crosshole Data: Part Ⅱ—Inversion Method, Synthetic Experiments and Real-Data Results. Geophysics, 60(3): 796–809 doi: 10.1190/1.1443818
    Tarantola, A., 1984. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49(8): 1259–1266 doi: 10.1190/1.1441754
    Tarantola, A., 1986. A Strategy for Nonlinear Elastic Inversion of Seismic Reflection Data. Geophysics, 51(10): 1893–1903 doi: 10.1190/1.1442046
    Versteeg, R., 1994. The Marmousi Experience: Velocity Model Determination on a Synthetic Complex Data Set. The Leading Edge, 13: 927–936 doi: 10.1190/1.1437051
    Virieux, J., Operto, S., 2009. An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 74(6): WCC1–WCC26 doi: 10.1190/1.3238367
    Wang, Y. H., Rao, Y., 2009. Reflection Seismic Waveform Tomography. Journal of Geophysical Research, 114: B03304
    Williamson, P. R., 1991. A Guide to the Limits of Resolution Imposed by Scattering in Ray Tomography. Geophysics, 56(2): 202–207 doi: 10.1190/1.1443032
    Williamson, P. R., Worthington, M. H., 1993. Resolution Limits in Ray Tomography due to Wave Behavior: Numerical Experiments. Geophysics, 58(5): 727–735 doi: 10.1190/1.1443457
    Woodward, M. J., 1992. Wave-Equation Tomography. Geophysics, 57(1): 15–26 doi: 10.1190/1.1443179
    Wu, R. S., Toksöz, M. N., 1987. Diffraction Tomography and Multisource Holography Applied to Seismic Imaging. Geophysics, 52(1): 11–25 doi: 10.1190/1.1442237
    Xu, K., Greenhalgh, S., 2010. Ore-Body Imaging by Crosswell Seismic Waveform Inversion: A Case Study from Kambalda, Western Australia. Journal of Applied Geophysics, 70(1): 38–45 doi: 10.1016/j.jappgeo.2009.11.001
    Xu, S., Lambaré, G., 2004. Fast Migration/Inversion with Multivalued Rayfields: Part 1—Method, Validation Test, and Application in 2D to Marmousi. Geophysics, 69(5): 1311–1319 doi: 10.1190/1.1801947
    Yoon, K., Shin, C., Marfurt, K. J., 2003. Waveform Inversion Using Time-Windowed Back Propagation. 73rd Annual International Meeting, SEG, Expanded Abstracts. SEG, Tulsa. 690–693
    Zhou, B., Greenhalgh, S., 2006. An Adaptive Wavenumber Sampling Strategy for 2.5D Seismic-Wave Modeling in the Frequency Domain. Pure and Applied Geophysics, 163(7): 1399–1416 doi: 10.1007/s00024-006-0081-7
    Zhou, H. W., 2006. Multiscale Deformable-Layer Tomography. Geophysics, 71(3): R11–R19 doi: 10.1190/1.2194519
    Zhu, X. H., Valasek, P., Roy, B., et al., 2008. Recent Applications of Turning-Ray Tomography. Geophysics, 73(5): VE243–VE254 doi: 10.1190/1.2957894
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(957) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return