Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 5
Oct 2011
Turn off MathJax
Article Contents
Lin Li. Quantifying TiO2 Abundance of Lunar Soils: Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect. Journal of Earth Science, 2011, 22(5): 549-565. doi: 10.1007/s12583-011-0206-5
Citation: Lin Li. Quantifying TiO2 Abundance of Lunar Soils: Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect. Journal of Earth Science, 2011, 22(5): 549-565. doi: 10.1007/s12583-011-0206-5

Quantifying TiO2 Abundance of Lunar Soils: Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect

doi: 10.1007/s12583-011-0206-5
Funds:

the Research Support Funds Grant (RSFG) program of Indiana University–Purdue University at Indianapolis 

More Information
  • Corresponding author: Lin Li, ll3@iupui.edu
  • Received Date: 06 Dec 2010
  • Accepted Date: 13 Mar 2011
  • Publish Date: 01 May 2011
  • Partial least squares (PLS) regression was applied to the Lunar Soil Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and low-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the positive correlation between a major TiO2-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.

     

  • loading
  • Blewett, D. T., Lucey, P. G., Hawke, B. R., et al., 1997. Clementine Images of the Lunar Sample-Return Stations: Refinement of FeO and TiO2 Mapping Techniques. J. Geophys. Res. , 102(E7): 16319–16325 doi: 10.1029/97JE01505
    Charette, M. P., McCord, T. B., Pieters, C. M., et al., 1974. Application of Remote Spectral Reflectance Measurements to Lunar Geology Classification and Determination of Titanium Content of Lunar Soils. J. Geophys. Res. , 79(11): 1605–1613 doi: 10.1029/JB079i011p01605
    De Jong, S., 1993. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 18(3): 251–263 doi: 10.1016/0169-7439(93)85002-X
    Geladi, P., Kowalski, B. R., 1986. Partial Least Squares Regression: A Tutorial. Analytia Chimica Acta, 185: 1–17, doi: 10.1016/0003-2670(86)80028-9
    Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteorit. Planet. Sci. , 35(1): 193–200 doi: 10.1111/j.1945-5100.2000.tb01985.x
    Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. J. Geophys. Res. , 108(E2): 5009, doi: 10.1029/2001JE0 01515
    Gillis, J. J., Jolliff, B. L., Korotev, R. L., 2004. Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived from Lunar Prospector and Clementine Data. Geochim. Cosmochim. Acta, 68(18): 3791–3805, doi: 10.1016/j.gca.2004.03.024
    Gillis-Davis, J. J., Lucey, P. G., Hawke, B. R., 2006. Testing the Relation between UV-VIS Color and TiO2 Content of the Lunar Maria. Geochim. Cosmochim. Acta, 70(24): 6079–6102, doi: 10.1016/j.gca.2006.08.035
    Greeley, R., Kadel, S. D., Williams, D. A., et al., 1993. Galileo Imaging Observations of Lunar Maria and Related Depos its. J. Geophys. Res. , 98(E9): 17183–17205 doi: 10.1029/93JE01000
    Haaland, D. M., Thomas, E. V., 1988a. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11): 1193–1202
    Haaland, D. M., Thomas, E. V., 1988b. Partial Least-Squares Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data. Analytical Chemistry, 60(11): 1202–1208
    Hapke, B., 2005. Theory of Reflectance and Emittance Spectroscopy. Cambridge Univ. Press, Cambridge
    Jaumann, R., 1991. Spectral-Chemical Analysis of Lunar Surface Materials. J. Geophys. Res. , 96(E5): 22793–22807 doi: 10.1029/91JE02396
    Johnson, J. R., Larson, S. M., Singer, R. B., 1991. Remote Sensing of Potential Lunar Resources 1. Near-Side Compositional Properties. J. Geophys. Res. , 96(E3): 18861–18882
    Kodama, S., Yamaguchi, Y., 2003. Lunar Mare Volcanism in the Eastern Nearside Region Derived from Clementine UV/VIS Data. Meteorit. Planet. Sci. , 38(10): 1461–1484 doi: 10.1111/j.1945-5100.2003.tb00251.x
    Kodama, S., Yamaguchi, Y., 2005. Mare Volcanism on the Moon Inferred from Clementine UVVIS Data. In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States
    Korokhin, V. V., Kaydash, V. G., Shkuratov, Y. G., et al., 2008. Prognosis of TiO2 Abundance in Lunar Soil Using a Non-Linear Analysis of Clementine and LSCC Data. Planet. Space Sci. , 56(8): 1063–1078 doi: 10.1016/j.pss.2008.02.001
    Le Mouelic, S., Langevin, Y., Erard, S., et al., 2000. Discrimination between Maturity and Composition of Lunar Soils from Integrated Clementine UV-Visible/Near-Infrared Data: Application to the Aristarchus Plateau. J. Geophys. Res. , 105(E4): 9445–9455 doi: 10.1029/1999JE001196
    Lestander, T. A., Leardi, R., Geladi, P., 2003. Selection of Near Infrared Wavelengths Using Genetic Algorithms for the Determination of Seed Moisture Content. Journal of Near Infrared Spectroscopy, 11(6): 433–446 doi: 10.1255/jnirs.394
    Li, L., 2006. Partial Least Squares Modeling to Quantify Lunar Soil Composition with Hyperspectral Reflectance Spectra. J. Geophys. Res. , 111: E04002, doi: 10.1029/2005JE002598
    Li, L., 2008a. Quantifying Lunar Soil Composition with Partial Least Squares Modeling of Reflectance. Advances in Space Research, 42(2): 267–274 doi: 10.1016/j.asr.2007.06.018
    Li, L., 2008b. Partial Least Squares Methods for Spectrally Estimating Lunar Soil FeO Abundance: A Stratified Approach to Revealing Nonlinear Effect and Qualitative Interpretation. J. Geophys. Res. , 113(E12): E12013, doi: 10.1029/2008JE003213
    Lucey, P. G., Blewett, D. T., Hawke, B. R., 1998b. Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery. J. Geophys. Res. , 103(E2): 3679–3699 doi: 10.1029/97JE03019
    Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res. , 105(E8): 20297–20305 doi: 10.1029/1999JE001117
    Lucey, P. G., Taylor, G. J., Hawke, B. R., et al., 1998a. FeO and TiO2 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation. J. Geophys. Res. , 103(E2): 3701–3708 doi: 10.1029/97JE03146
    Martens, H., Naes, T., 1992. Multivariate Calibration. John Wiley and Sons Ltd, New York. 438
    McCord, T. B., Clark, R. N., Hawke, B. R., et al., 1981. Moon: Near-Infrared Spectral Reflectance, a First Good Look. J. Geophys. Res. , 86(B11): 10883–10892 doi: 10.1029/JB086iB11p10883
    McCord, T. B., Pieters, C., Feierberg, M. A., 1976. Multispectral Mapping of the Lunar Surface Using Ground-Based Telescopes. Icarus, 29(1): 1–34 doi: 10.1016/0019-1035(76)90099-3
    Melendrez, D., Johnson, J. R., Larson, S. M., et al., 1994. Remote Sensing of Potential Lunar Resources. 2. High Spatial Resolution Mapping of Spectral Reflectance Ratios and Implications for Nearside Mare TiO2 Content. J. Geophys. Res. , 99(E3): 5601–5619
    Miller, A. J., 2002. Subset Selection in Regression. Chapman & Hall/CRS, New York. 238
    Pieters, C. M., 1978. Mare Basalt Types on the Front Side of the Moon: A Summary of Spectral Reflectance Data. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States. 2825–2849
    Pieters, C. M., Head, J. W., Sunshine, J. M., et al., 1993. Crustal Diversity of the Moon: Compositional Analysis of Galileo Solid State Imaging Data. J. Geophys. Res. , 98(E9): 17127–17148 doi: 10.1029/93JE01221
    Pieters, C. M., Shkuratov, Y. G., Kaydash, V. G., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 184(1): 83–101 doi: 10.1016/j.icarus.2006.04.013
    Pieters, C. M., Stankevich, D. G., Shkuratov, Y. G., et al., 2002. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus, 155: 285–298 doi: 10.1006/icar.2001.6749
    Riner, M. A., Robinson, M. S., Tangeman, J. A., et al., 2005. Is Ilmenite always the Dominant Carrier of Titanium in Lunar Mare Basalts? In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States
    Shkuratov, Y. G., Kaydash, V. G., Opanasenko, N. V., 1999. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 137(2): 222–234 doi: 10.1006/icar.1999.6046
    Shkuratov, Y. G., Kaydash, V. G., Pieters, C. M., 2005b. Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar Sys. Res. , 39(4): 255–266 doi: 10.1007/s11208-005-0041-2
    Shkuratov, Y. G., Kaydash, V. G., Stankevich, D. G., et al., 2005a. Derivation of Elemental Abundance Maps at Intermediate Resolution from Optical Interpolation of Lunar Prospector Gamma-Ray Spectrometer Data. Planet. Space Sci. , 53(12): 1287–1301 doi: 10.1016/j.pss.2005.07.001
    Shkuratov, Y. G., Pieters, C. M., Omelchenko, V. V., et al., 2003a. Estimates of the Lunar Surface Composition with Clementine Images and LSCC Data. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States
    Shkuratov, Y. G., Stankevich, D. G., Kaydash, V. G., et al., 2003b. Composition of the Lunar Surface as will be Seen from SMART-1: A Simulation Using Clementine Data. J. Geophys. Res. , 108(E4): 5020, doi: 10.1029/2002JE001971
    Taylor, L. A., Morris, R. V., Keller, L. P., et al., 2000b. Major Contributions to Spectral Reflectance Opacity by Non-Agglutinitic, Surface-Correlated Nanophase Iron. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
    Taylor, L. A., Morris, R. V., Pieters, C. M., et al., 2000a. Chemical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
    Taylor, L. A., Patchen, A., Taylor, D. S., et al., 2000c. Mineralogical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
    Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. J. Geophys. Res. , 106(E11): 27985–27999 doi: 10.1029/2000JE001402
    Taylor, L. A., Pieters, C. M., Morris, R. V., et al., 1999. Integration of the Chemical and Mineralogical Characteristics of Lunar Soils with Reflectance Spectroscopy. In: Proceedings of 30th Lunar and Planetary Science Conference. Huston, United States
    Taylor, L. A., Pieters, C. M., Patchen, A., et al., 2003. Mineralogical Characterization of Lunar Highland Soils. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States
    Williams, D. A., Greeley, R., Neukum, G., et al., 1995. Multispectral Studies of Western Limb and Farside Maria from Galileo Earth-Moon Encounter-1. J. Geophys. Res. , 100(E11): 23291–23299 doi: 10.1029/94JE01863
    Wold, H., 1966a. Nonlinear Estimation by Iterative Least Squares Procedure. In: David, F., ed., Research Papers in Statistics. Wiley & Sons, New York. 441–444
    Wold, H., 1966b. Estimation of Principal Components and Related Models by Iterative Least Squares. In: Krishnaiah, P. R., ed., Multivariate Analysis. Academic Press, New York. 391–420
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views(1012) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return