Blewett, D. T., Lucey, P. G., Hawke, B. R., et al., 1997. Clementine Images of the Lunar Sample-Return Stations: Refinement of FeO and TiO2 Mapping Techniques. J. Geophys. Res. , 102(E7): 16319–16325 doi: 10.1029/97JE01505 |
Charette, M. P., McCord, T. B., Pieters, C. M., et al., 1974. Application of Remote Spectral Reflectance Measurements to Lunar Geology Classification and Determination of Titanium Content of Lunar Soils. J. Geophys. Res. , 79(11): 1605–1613 doi: 10.1029/JB079i011p01605 |
De Jong, S., 1993. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 18(3): 251–263 doi: 10.1016/0169-7439(93)85002-X |
Geladi, P., Kowalski, B. R., 1986. Partial Least Squares Regression: A Tutorial. Analytia Chimica Acta, 185: 1–17, doi: 10.1016/0003-2670(86)80028-9 |
Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteorit. Planet. Sci. , 35(1): 193–200 doi: 10.1111/j.1945-5100.2000.tb01985.x |
Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. J. Geophys. Res. , 108(E2): 5009, doi: 10.1029/2001JE0 01515 |
Gillis, J. J., Jolliff, B. L., Korotev, R. L., 2004. Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived from Lunar Prospector and Clementine Data. Geochim. Cosmochim. Acta, 68(18): 3791–3805, doi: 10.1016/j.gca.2004.03.024 |
Gillis-Davis, J. J., Lucey, P. G., Hawke, B. R., 2006. Testing the Relation between UV-VIS Color and TiO2 Content of the Lunar Maria. Geochim. Cosmochim. Acta, 70(24): 6079–6102, doi: 10.1016/j.gca.2006.08.035 |
Greeley, R., Kadel, S. D., Williams, D. A., et al., 1993. Galileo Imaging Observations of Lunar Maria and Related Depos its. J. Geophys. Res. , 98(E9): 17183–17205 doi: 10.1029/93JE01000 |
Haaland, D. M., Thomas, E. V., 1988a. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11): 1193–1202 |
Haaland, D. M., Thomas, E. V., 1988b. Partial Least-Squares Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data. Analytical Chemistry, 60(11): 1202–1208 |
Hapke, B., 2005. Theory of Reflectance and Emittance Spectroscopy. Cambridge Univ. Press, Cambridge |
Jaumann, R., 1991. Spectral-Chemical Analysis of Lunar Surface Materials. J. Geophys. Res. , 96(E5): 22793–22807 doi: 10.1029/91JE02396 |
Johnson, J. R., Larson, S. M., Singer, R. B., 1991. Remote Sensing of Potential Lunar Resources 1. Near-Side Compositional Properties. J. Geophys. Res. , 96(E3): 18861–18882 |
Kodama, S., Yamaguchi, Y., 2003. Lunar Mare Volcanism in the Eastern Nearside Region Derived from Clementine UV/VIS Data. Meteorit. Planet. Sci. , 38(10): 1461–1484 doi: 10.1111/j.1945-5100.2003.tb00251.x |
Kodama, S., Yamaguchi, Y., 2005. Mare Volcanism on the Moon Inferred from Clementine UVVIS Data. In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States |
Korokhin, V. V., Kaydash, V. G., Shkuratov, Y. G., et al., 2008. Prognosis of TiO2 Abundance in Lunar Soil Using a Non-Linear Analysis of Clementine and LSCC Data. Planet. Space Sci. , 56(8): 1063–1078 doi: 10.1016/j.pss.2008.02.001 |
Le Mouelic, S., Langevin, Y., Erard, S., et al., 2000. Discrimination between Maturity and Composition of Lunar Soils from Integrated Clementine UV-Visible/Near-Infrared Data: Application to the Aristarchus Plateau. J. Geophys. Res. , 105(E4): 9445–9455 doi: 10.1029/1999JE001196 |
Lestander, T. A., Leardi, R., Geladi, P., 2003. Selection of Near Infrared Wavelengths Using Genetic Algorithms for the Determination of Seed Moisture Content. Journal of Near Infrared Spectroscopy, 11(6): 433–446 doi: 10.1255/jnirs.394 |
Li, L., 2006. Partial Least Squares Modeling to Quantify Lunar Soil Composition with Hyperspectral Reflectance Spectra. J. Geophys. Res. , 111: E04002, doi: 10.1029/2005JE002598 |
Li, L., 2008a. Quantifying Lunar Soil Composition with Partial Least Squares Modeling of Reflectance. Advances in Space Research, 42(2): 267–274 doi: 10.1016/j.asr.2007.06.018 |
Li, L., 2008b. Partial Least Squares Methods for Spectrally Estimating Lunar Soil FeO Abundance: A Stratified Approach to Revealing Nonlinear Effect and Qualitative Interpretation. J. Geophys. Res. , 113(E12): E12013, doi: 10.1029/2008JE003213 |
Lucey, P. G., Blewett, D. T., Hawke, B. R., 1998b. Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery. J. Geophys. Res. , 103(E2): 3679–3699 doi: 10.1029/97JE03019 |
Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res. , 105(E8): 20297–20305 doi: 10.1029/1999JE001117 |
Lucey, P. G., Taylor, G. J., Hawke, B. R., et al., 1998a. FeO and TiO2 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation. J. Geophys. Res. , 103(E2): 3701–3708 doi: 10.1029/97JE03146 |
Martens, H., Naes, T., 1992. Multivariate Calibration. John Wiley and Sons Ltd, New York. 438 |
McCord, T. B., Clark, R. N., Hawke, B. R., et al., 1981. Moon: Near-Infrared Spectral Reflectance, a First Good Look. J. Geophys. Res. , 86(B11): 10883–10892 doi: 10.1029/JB086iB11p10883 |
McCord, T. B., Pieters, C., Feierberg, M. A., 1976. Multispectral Mapping of the Lunar Surface Using Ground-Based Telescopes. Icarus, 29(1): 1–34 doi: 10.1016/0019-1035(76)90099-3 |
Melendrez, D., Johnson, J. R., Larson, S. M., et al., 1994. Remote Sensing of Potential Lunar Resources. 2. High Spatial Resolution Mapping of Spectral Reflectance Ratios and Implications for Nearside Mare TiO2 Content. J. Geophys. Res. , 99(E3): 5601–5619 |
Miller, A. J., 2002. Subset Selection in Regression. Chapman & Hall/CRS, New York. 238 |
Pieters, C. M., 1978. Mare Basalt Types on the Front Side of the Moon: A Summary of Spectral Reflectance Data. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States. 2825–2849 |
Pieters, C. M., Head, J. W., Sunshine, J. M., et al., 1993. Crustal Diversity of the Moon: Compositional Analysis of Galileo Solid State Imaging Data. J. Geophys. Res. , 98(E9): 17127–17148 doi: 10.1029/93JE01221 |
Pieters, C. M., Shkuratov, Y. G., Kaydash, V. G., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 184(1): 83–101 doi: 10.1016/j.icarus.2006.04.013 |
Pieters, C. M., Stankevich, D. G., Shkuratov, Y. G., et al., 2002. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus, 155: 285–298 doi: 10.1006/icar.2001.6749 |
Riner, M. A., Robinson, M. S., Tangeman, J. A., et al., 2005. Is Ilmenite always the Dominant Carrier of Titanium in Lunar Mare Basalts? In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States |
Shkuratov, Y. G., Kaydash, V. G., Opanasenko, N. V., 1999. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 137(2): 222–234 doi: 10.1006/icar.1999.6046 |
Shkuratov, Y. G., Kaydash, V. G., Pieters, C. M., 2005b. Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar Sys. Res. , 39(4): 255–266 doi: 10.1007/s11208-005-0041-2 |
Shkuratov, Y. G., Kaydash, V. G., Stankevich, D. G., et al., 2005a. Derivation of Elemental Abundance Maps at Intermediate Resolution from Optical Interpolation of Lunar Prospector Gamma-Ray Spectrometer Data. Planet. Space Sci. , 53(12): 1287–1301 doi: 10.1016/j.pss.2005.07.001 |
Shkuratov, Y. G., Pieters, C. M., Omelchenko, V. V., et al., 2003a. Estimates of the Lunar Surface Composition with Clementine Images and LSCC Data. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States |
Shkuratov, Y. G., Stankevich, D. G., Kaydash, V. G., et al., 2003b. Composition of the Lunar Surface as will be Seen from SMART-1: A Simulation Using Clementine Data. J. Geophys. Res. , 108(E4): 5020, doi: 10.1029/2002JE001971 |
Taylor, L. A., Morris, R. V., Keller, L. P., et al., 2000b. Major Contributions to Spectral Reflectance Opacity by Non-Agglutinitic, Surface-Correlated Nanophase Iron. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States |
Taylor, L. A., Morris, R. V., Pieters, C. M., et al., 2000a. Chemical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States |
Taylor, L. A., Patchen, A., Taylor, D. S., et al., 2000c. Mineralogical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States |
Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. J. Geophys. Res. , 106(E11): 27985–27999 doi: 10.1029/2000JE001402 |
Taylor, L. A., Pieters, C. M., Morris, R. V., et al., 1999. Integration of the Chemical and Mineralogical Characteristics of Lunar Soils with Reflectance Spectroscopy. In: Proceedings of 30th Lunar and Planetary Science Conference. Huston, United States |
Taylor, L. A., Pieters, C. M., Patchen, A., et al., 2003. Mineralogical Characterization of Lunar Highland Soils. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States |
Williams, D. A., Greeley, R., Neukum, G., et al., 1995. Multispectral Studies of Western Limb and Farside Maria from Galileo Earth-Moon Encounter-1. J. Geophys. Res. , 100(E11): 23291–23299 doi: 10.1029/94JE01863 |
Wold, H., 1966a. Nonlinear Estimation by Iterative Least Squares Procedure. In: David, F., ed., Research Papers in Statistics. Wiley & Sons, New York. 441–444 |
Wold, H., 1966b. Estimation of Principal Components and Related Models by Iterative Least Squares. In: Krishnaiah, P. R., ed., Multivariate Analysis. Academic Press, New York. 391–420 |