Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 5
Oct 2011
Turn off MathJax
Article Contents
Xiaohui Fu, Yongliao Zou, Yongchun Zheng, Huaiyu He, Ziyuan Ouyang. Noble Gas Diffusion Mechanism in Lunar Soil Simulant Grains: Results from 4He+ Implantation and Extraction Experiments. Journal of Earth Science, 2011, 22(5): 566-577. doi: 10.1007/s12583-011-0207-4
Citation: Xiaohui Fu, Yongliao Zou, Yongchun Zheng, Huaiyu He, Ziyuan Ouyang. Noble Gas Diffusion Mechanism in Lunar Soil Simulant Grains: Results from 4He+ Implantation and Extraction Experiments. Journal of Earth Science, 2011, 22(5): 566-577. doi: 10.1007/s12583-011-0207-4

Noble Gas Diffusion Mechanism in Lunar Soil Simulant Grains: Results from 4He+ Implantation and Extraction Experiments

doi: 10.1007/s12583-011-0207-4
Funds:

the National High Technology Research and Development Program of China 2009AA122201

the National Natural Science Foundation of China 40904051

More Information
  • Corresponding author: Yongliao Zou, ylzou@bao.ac.cn
  • Received Date: 20 Dec 2010
  • Accepted Date: 10 Mar 2011
  • Publish Date: 01 May 2011
  • Experiments on ion implantation were performed in order to better characterize diffusion of noble gases in lunar soil. 4He+ at 50 keV with 5×1016 ions/cm2 was implanted into lunar simulants and crystal ilmenite. Helium in the samples was released by stepwise heating experiments. Based on the data, we calculated the helium diffusion coefficient and activation energy. Lunar simulants display similar 4He release patterns in curve shape as lunar soil, but release temperatures are a little lower. This is probably a consequence of long-term diffusion after implantation in lunar soil grains. Variation of activation energy was identified in the Arrhenius plots of lunar simulants and Panzhihua (攀枝花) ilmenite. We conclude that noble gas release in lunar soil cannot be described as simple thermally activated volume diffusion. Variation of diffusion parameters could be attributed to physical transformation during high temperature. Radiation damage probably impedes helium diffusion. However, bubble radius growth during heating does not correlate with activation energy variation. Activation energy of Panzhihua ilmenite is 57.935 kJ/mol. The experimental results confirm that ilmenite is more retentive for noble gas than other lunar materials.

     

  • loading
  • Anufriev, G. S., 2010. Hopping Diffusion of Helium Isotopes from Samples of Lunar Soil. Physics of the Solid State, 52(10): 2058–2062 doi: 10.1134/S1063783410100082
    Benkert, J. P., Baur, H., Signer, P., et al., 1993. He, Ne, and Ar from the Solar Wind and Solar Energetic Particles in Lunar Ilmenites and Pyroxenes. J. Geophys. Res. , 98(E7): 13147–13162 doi: 10.1029/93JE01460
    Bibring, J. P., Borg, J., Burlingame, A. L., et al., 1975. Solar-Wind and Solar-Flare Maturation of the Lunar Regolith. In: Proceedings of the 6th Lunar and Planetary Science Conference. California, United States. 3471–3493
    Borg, J., Chaumont, J., Jouret, C., et al., 1980. Solar Wind Radiation Damage in Lunar Dust Grains and the Characteristics of the Ancient Solar Wind. In: Pepin, R. O., Eddy, J. A., Merrill, R. B., eds., The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites. Pergamon Press, New York. 431–461
    Brownlee, D. E., Joswiak, D. J., Bradley, J. P., et al., 1998. Tiny Bubbles: Direct Observation of He in IDPs. In: Proceedings of the 29th Lunar and Planetary Science Conference. Houston, TX, United States
    Carrez, P., Demyk, K., Cordier, P., et al., 2002. Low-Energy Helium Ion Irradiation-Induced Amorphization and Chemical Changes in Olivine: Insights for Silicate Dust Evolution in the Interstellar Medium. Meteoritics and Planetary Science, 37(11): 1599–1614 doi: 10.1111/j.1945-5100.2002.tb00814.x
    Cherniak, D. J., Watson, E. B., Thomas, J. B., 2009. Diffusion of Helium in Zircon and Apatite. Chemical Geology, 268(1–2): 155–166
    Demyk, K., Carrez, P., Leroux, H., et al., 2001. Structural and Chemical Alteration of Crystalline Olivine under Low Energy He+ Irradiation. Astronomy & Astrophysics, 368(3): L38–L41
    Demyk, K., d'Hendecourt, L., Leroux, H., et al., 2004. IR Spectroscopic Study of Olivine, Enstatite and Diopside Irradiated with Low Energy H+ and He+ Ions. Astronomy & Astrophysics, 420(1): 233–243
    Ducati, H., Kalbitzer, S., Kiko, J., et al., 1973. Rare Gas Diffusion Studies in Individual Lunar Soil Particles and in Artificially Implanted Glasses. The Moon, 8(1–2): 210–227
    Eberhardt, P., Geiss, J., Groegler, N., et al., 1973. Noble Gases in Apollo 16 Lunar Fines. Lunar Sci. Inst., Houston. 209–211
    Eugster, O., Geiss, J., Krahenbuhl, U., et al., 1986. Noble Gas Isotopic Composition, Cosmic Ray Exposure History, and Terrestrial Age of the Meteorite Allan Hills A81005 from the Moon. Earth and Planetary Science Letters, 78(2–3): 139–147
    Farley, K. A., Stockli, D. F., 2002. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Reviews in Mineralogy and Geochemistry, 48: 559–577 doi: 10.2138/rmg.2002.48.15
    Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223–4229 doi: 10.1016/S0016-7037(96)00193-7
    Fechtig, H., Kalbitzer, S., 1966. The Diffusion of Argon in Potassium-Bearing Solids. In: Schaeffer, O. A., Zahringer, J., eds., Potassium Argon Dating. Springer, Heidelberg. 68–107
    Frick, U., Becker, R. H., Pepin, R. O., 1988. Solar Wind Record in the Lunar Regolith: Nitrogen and Noble Gases. In: Proceedings of the 18th Lunar and Planetary Science Conference. Houston, TX, United States. 87–120
    Frick, U., Mack, R., Chang, S., 1979. Noble Gas Trapping and Fractionation during Synthesis of Carbonaceous Matter. In: Proceedings of the 10th Lunar and Planetary Science Conference. Houston, TX, United States. 1961–1973
    Futagami, T., Ozima, M., Nagal, S., et al., 1993. Experiments on Thermal Release of Implanted Noble Gases from Minerals and Their Implications for Noble Gases in Lunar Soil Grains. Geochimica et Cosmochimica Acta, 57(13): 3177–3194 doi: 10.1016/0016-7037(93)90302-D
    Futagami, T., Ozima, M., Nakamura, Y., 1990. Helium Ion Implantation into Minerals. Earth and Planetary Science Letters, 101(1): 63–67 doi: 10.1016/0012-821X(90)90124-G
    Heber, V. S., Baur, H., Wieler, R., 2003. Helium in Lunar Samples Analyzed by High-Resolution Stepwise Etching: Implications for the Temporal Constancy of Solar Wind Isotopic Composition. Astrophysical Journal, 597(1): 602–614 doi: 10.1086/378402
    Heiken, G. H., Vaniman, D. T., French, B. M., 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press, Cambridge
    Hohenberg, C. M., Davis, P. K., Kaiser, W. A., et al., 1970. Trapped and Cosmogenic Rare Gases from Stepwise Heating of Apollo 11 Samples. Pergamon Press, New York, Oxford. 1283–1309
    Honda, M., Nutman, A. P., Bennett, V. C., et al., 2004. Radiogenic, Nucleogenic and Fissiogenic Noble Gas Compositions in Early Archaean Magmatic Zircons from Greenland. Geochemical Journal, 38(3): 265–269 doi: 10.2343/geochemj.38.265
    Hutcheon, I. D., Phakey, P. P., Price, P. B., 1972. Studies Bearing on the History of Lunar Breccias. Geochimica et Cosmochimica Acta, 3(3): 2845–2865
    Jager, C., Fabian, D., Schrempel, F., et al., 2003. Structural Processing of Enstatite by Ion Bombardment. Astronomy & Astrophysics, 401(1): 57–65
    Kiko, J., Mahninger, N., Rittershausen, W., et al., 1981. Correlation between Solar Wind 4He Distribution and Noble Gas Fractionation in Lunar Ilmenites. Meteoritics, 16(4): 339–340
    Kuhlman, H., Renae, K., 1998. Trapping and Diffusion of Helium in Lunar Minerals: [Dissertation]. The University of Wisconsin, Madison
    Li, Y. Q., Liu, J. Z., Yue, Z. Y., 2009. Nao-1: A Lunar Highland Soil Simulant Developed in China. Journal of Aerospace Engineering, 22(1): 53–57 doi: 10.1061/(ASCE)0893-1321(2009)22:1(53)
    Mueller, H. W., Kiko, J., Kirsten, T., 1976. High Resolution Depth Profiles of Rare Gases in Individual Lunar Soil Particles. In: Proceedings of the 7th Lunar and Planetary Science Conference. Houston, TX, United States. 577
    Oliviero, E., David, M. L., Beaufort, M. F., et al., 2002. On the Effects of Implantation Temperature in Helium Implanted Silicon. Applied Physics Letters, 81(22): 4201–4203 doi: 10.1063/1.1525059
    Ozima, M., Yin, Q. Z., Podosek, F. A., et al., 2008. Toward Understanding Early Earth Evolution: Prescription for Approach from Terrestrial Noble Gas and Light Element Records in Lunar Soils. Proceedings of the National Academy of Sciences, USA, 105(46): 17654–17658 doi: 10.1073/pnas.0806596105
    Pepin, R. O., Becker, R. H., Schlutter, D. J., 1999. Irradiation Records in Regolith Materials. Ⅰ: Isotopic Compositions of Solar-Wind Neon and Argon in Single Lunar Mineral Grains. Geochimica et Cosmochimica Acta, 63(13–14): 2145–2162
    Pepin, R. O., Nyquist, L. E., Phinney, D., et al., 1970. Rare Gases in Apollo 11 Lunar Material. Pergamon Press, New York, Oxford. 1435–1454
    Pillinger, C. T., 1979. Solar-Wind Exposure Effects in the Lunar Soil. Reports on Progress in Physics, 42(2): 897–961
    Raineri, V., Saggio, M., Rimini, E., 2000. Voids in Silicon by He Implantation: From Basic to Applications. Journal of Materials Research, 15(7): 1449–1477 doi: 10.1557/JMR.2000.0211
    Reiners, P. W., 2005. Zircon (U-Th)/He Thermochronometry. Reviews in Mineralogy and Geochemistry, 58: 151–179 doi: 10.2138/rmg.2005.58.6
    Reiners, P. W., Campbell, I. H., Nicolescu, S., et al., 2005. (U-Th)/(He-Pb) Double Dating of Detrital Zircons. American Journal of Science, 305(4): 259–311 doi: 10.2475/ajs.305.4.259
    Reiners, P. W., Farley, K. A., 1999. Helium Diffusion and (U-Th)/He Thermochronometry of Titanite. Geochimica et Cosmochimica Acta, 63(22): 3845–3859 doi: 10.1016/S0016-7037(99)00170-2
    Reiners, P. W., Farley, K. A., Hickes, H. J., 2002. He Diffusion and (U-Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1–4): 297–308
    Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U-Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8): 1857–1887 doi: 10.1016/j.gca.2003.10.021
    Sharafat, S., Takahashi, A., Hu, Q., et al., 2009. A Description of Bubble Growth and Gas Release of Helium Implanted Tungsten. Journal of Nuclear Materials, 386: 900–903
    Shuster, D. L., 2005. Application of Spallogenic Noble Gases Induced by Energetic Proton Irradiation to Problems in Geochemistry and Thermochronometry: [Dissertation]. California Institute of Technology, Pasadena. 173
    Shuster, D. L., Farley, K. A., 2009. The Influence of Artificial Radiation Damage and Thermal Annealing on Helium Diffusion Kinetics in Apatite. Geochimica et Cosmochimica Acta, 73(1): 183–196 doi: 10.1016/j.gca.2008.10.013
    Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3–4): 148–161
    Tamhane, A. S., Agrawal, J. K., 1979. Diffusion of Rare Gases of Solar Wind Origin from Lunar Fines as Bubbles. Earth and Planetary Science Letters, 42(2): 243–250 doi: 10.1016/0012-821X(79)90031-1
    Trull, T. W., Kurz, M. D., Jenkins, W. J., 1991. Diffusion of Cosmogenic 3He in Olivine and Quartz: Implications for Surface Exposure Dating. Earth and Planetary Science Letters, 103(1–4): 241–256
    Watson, E. B., Baxter, E. F., 2007. Diffusion in Solid-Earth Systems. Earth and Planetary Science Letters, 253(3–4): 307–327
    Wieler, R., Baur, H., 1995. Fractionation of Xe, Kr, and Ar in the Solar Corpuscular Radiation Deduced by Closed System Etching of Lunar Soils. Astrophysical Journal, 453(2): 987–997
    Wieler, R., Baur, H., Signer, P., 1986. Noble Gases from Solar Energetic Particles Revealed by Closed System Stepwise Etching of Lunar Soil Minerals. Geochimica et Cosmochimica Acta, 50(9): 1997–2017 doi: 10.1016/0016-7037(86)90255-3
    Wieler, R., Heber, V., 2003. Noble Gas Isotopes on the Moon. Space Science Reviews, 106(1–4): 197–210
    Yi, L. J., 2007. Study of Cavity Formation and Helium Desorption in Crystalline Si Implanted with He Ions: [Dissertation]. Tianjin University, Tianjin (in Chinese with English Abstract)
    Zashu, S., Hiyagon, H., 1995. Degassing Mechanisms of Noble Gases from Carbonado Diamonds. Geochimica et Cosmochimica Acta, 59(7): 1321–1328 doi: 10.1016/0016-7037(95)00046-3
    Zeitler, P. K., Herczeg, A. L., McDougall, I., et al., 1987. U-Th-He Dating of Apatite: A Potential Thermochronometer. Geochimica et Cosmochimica Acta, 51(10): 2865–2868 doi: 10.1016/0016-7037(87)90164-5
    Zheng, Y. C., Wang, S. J., Ouyang, Z. Y., et al., 2009. Cas-1 Lunar Soil Simulant. Advances in Space Research, 43(3): 448–454 doi: 10.1016/j.asr.2008.07.006
    Ziegler, J. F., Ziegler, M. D., Biersack, J. P., 2010. SRIM: The Stopping and Range of Ions in Matter. Nuclear Instruments & Methods in Physics Research, 268(11–12): 1818–1823
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views(1187) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return