Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 5
Oct 2011
Turn off MathJax
Article Contents
Zongcheng Ling, Alian Wang, Bradley L. Jolliff. A Systematic Spectroscopic Study of Four Apollo Lunar Soils. Journal of Earth Science, 2011, 22(5): 578-585. doi: 10.1007/s12583-011-0208-3
Citation: Zongcheng Ling, Alian Wang, Bradley L. Jolliff. A Systematic Spectroscopic Study of Four Apollo Lunar Soils. Journal of Earth Science, 2011, 22(5): 578-585. doi: 10.1007/s12583-011-0208-3

A Systematic Spectroscopic Study of Four Apollo Lunar Soils

doi: 10.1007/s12583-011-0208-3
Funds:

the Funds from Shandong University and Washington University, the Postdoctoral Science Foundation of China 20090450580

the National Natural Science Foundation of China 11003012

the Natural Science Foundation of Shandong Province ZR2011AQ001

the National High Technology Research and Development Program of China 2009AA122201

the National High Technology Research and Development Program of China 2010AA122200

More Information
  • Corresponding author: Zongcheng Ling, zcling@sdu.edu.cn
  • Received Date: 20 Dec 2010
  • Accepted Date: 10 Mar 2011
  • Publish Date: 01 May 2011
  • A systematic spectroscopic study including Raman, Mid-IR, NIR, and VIS-NIR, is used to investigate four endmember lunar soils. Apollo soils (< 45 μm) 14163, 15271, 67511, and 71501 were selected as endmembers to study, based on their soil chemistry, maturity against space weathering, and the sampling locations. These endmembers include an anorthositic highlands soil (67511), a low-Ti basaltic soil (15271), a high-Ti basaltic soil (71501), and a mafic, KREEPy, impact-melt-rich soil (14163). We used a laser Raman point-counting procedure to derive mineral modes of the soils and the compositional distributions of major mineral phases, which in turn reflect characteristics of the main source materials for these soils. The Mid-IR, NIR, and VIS-NIR spectroscopic properties also yield distinct information on mineralogy, geochemistry, and maturity among the four soils. Knowledge of the mineralogy resulting from the Raman point-counting procedure corresponds well with bulk mineralogy and soil properties based on Mid-IR, NIR, and VIS-NIR spectroscopy. The future synergistic application of these spectroscopy methods on the Moon will provide a linkage between the results from in situ surface exploration and those from orbital remote-sensing observations.

     

  • loading
  • Adams, J. B., 1974. Visible and Near Infrared Diffuse Reflectance Spectra of Pyroxene as Applied to Remote Sensing of Solid Objects in the Solar System. Journal of Geophysical Research, 79(32): 4829–4836 doi: 10.1029/JB079i032p04829
    Bell, J. F., Squyres, S. W., Herkenhoff, K. E., et al., 2003. Mars Exploration Rover Athena Panoramic Camera (Pancam) Investigation. Journal of Geophysical Ressearch, 108(E12): 8063
    Bibring, J. P., Langevin, Y., Gendrin, A., et al., 2005. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 307(5715): 1576–1581 doi: 10.1126/science.1108806
    Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research, 106(E10): 23823–23871 doi: 10.1029/2000JE001370
    Christensen, P. R., Jakosky, B., Kieffer, H. H., et al., 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1–2): 85–130
    Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., 2003. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108(E12): 8064
    Clark, R. N., 2009. Detection of Adsorbed Water and Hydroxyl on the Moon. Science, 326(5952): 562–564 doi: 10.1126/science.1178105
    Freeman, J. J., Wang, A., Kuebler, K. E., et al., 2008. Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration. Canadian Mineralogist, 46: 1477–1500 doi: 10.3749/canmin.46.6.1477
    Haskin, L. A., Wang, A., Rockow, K. M., et al., 1997. Raman Spectroscopy for Mineral Identification and Quantification for in situ Planetary Surface Analysis: A Point Count Method. Journal of Geophysical Research, 102(E8): 19293–19306 doi: 10.1029/97JE01694
    Isaacson, P. J., Pieters, C. M., 2007. Spectroscopic Investigation of the Water Content of Lunar Soil. In: Proceedings of 38th Lunar and Planetary Science Conference. Huston, United States
    Jolliff, B. L., Hughes, J. M., Freeman, J. J., et al., 2006. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 91(10): 1583–1595 doi: 10.2138/am.2006.2185
    Kuebler, K. E., Jolliff, B. L., Wang, A., et al., 2006. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 70(24): 6201–6222 doi: 10.1016/j.gca.2006.07.035
    Ling, Z. C., Wang, A., Jolliff, B. L., 2011. Mineralogy and Geochemistry of Four Lunar Soils by Laser-Raman Study. Icarus, 211(1): 101–113 doi: 10.1016/j.icarus.2010.08.020
    Matsunaga, T., Ohtake, M., Haruyama, J., et al., 2008. Discoveries on the Lithology of Lunar Crater Central Peaks by SELENE Spectral Profiler. Geophyssical Research Letters, 35(23): L23201 doi: 10.1029/2008GL035868
    Morris, R. V., 1978. The Surface Exposure (Maturity) of Lunar Soils—Some Concepts and Is/FeO Compilation. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States
    Murchie, S., Arvidson, R., Bedini, P., et al., 2007. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 112: E05S03
    Paige, D. A., Foote, M. C., Greenhagen, B. T., et al., 2010. The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 150(1–4): 125–160
    Pieters, C. M., Englert, P. A. J., 1993. Remote Geochemical Analysis, Elemental and Mineralogical Composition. Cambridge University Press, Cambridge
    Pieters, C. M., Fischer, E. M., Rode, O., et al., 1993. Optical Effects of Space Weathering—The Role of the Finest Fraction. Journal of Geophysical Research, 98(E11): 20817–20824 doi: 10.1029/93JE02467
    Pieters, C. M., Goswami, J. N., Clark, R. N., et al., 2009. Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M-3 on Chandrayaan-1. Science, 326(5952): 568–572 doi: 10.1126/science.1178658
    Pieters, C. M., Shkuratov, Y., Kaydash, V., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 184(1): 83–101 doi: 10.1016/j.icarus.2006.04.013
    Sunshine, J. M., Farnham, T. L., Feaga, L. M., et al., 2009. Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft. Science, 326(5952): 565–568 doi: 10.1126/science.1179788
    Wang, A., Haskin, L. A., Lane, A. L., et al., 2003. Development of the Mars Microbeam Raman Spectrometer (MMRS). Journal of Geophysical Research, 108(E1): 5005 doi: 10.1029/2002JE001902
    Wang, A., Jolliff, B. L., Haskin, L. A., 1995. Raman-Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions. Journal of Geophysical Research, 100(E10): 21189–21199 doi: 10.1029/95JE02133
    Wang, A., Jolliff, B. L., Haskin, L. A., et al., 2001. Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 86(7–8): 790–806
    Wang, A., Kuebler, K. E., Jolliff, B. L., et al., 2004. Raman Spectroscopy of Fe-Ti-Cr-Oxides, Case Study: Martian Meteorite EETA79001. American Mineralogist, 89(5–6): 665–680
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(1100) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return