Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 5
Oct 2011
Turn off MathJax
Article Contents
S. A. Mazhari, S. Amini, J. Ghalamghash, F. Bea. Metasomatic Stages and Scapolitization Effects on Chemical Composition of Pasveh Pluton, NW Iran. Journal of Earth Science, 2011, 22(5): 619-619. doi: 10.1007/s12583-011-0213-6
Citation: S. A. Mazhari, S. Amini, J. Ghalamghash, F. Bea. Metasomatic Stages and Scapolitization Effects on Chemical Composition of Pasveh Pluton, NW Iran. Journal of Earth Science, 2011, 22(5): 619-619. doi: 10.1007/s12583-011-0213-6

Metasomatic Stages and Scapolitization Effects on Chemical Composition of Pasveh Pluton, NW Iran

doi: 10.1007/s12583-011-0213-6
More Information
  • Corresponding author: S. A. Mazhari, ali54894@yahoo.com
  • Received Date: 13 Dec 2009
  • Accepted Date: 10 Mar 2010
  • Publish Date: 01 May 2011
  • Pasveh gabbros are mafic component of a plutonic complex in the northwest Sanandaj-Sirjan Zone. These cumulative rocks are composed of plagioclase and calcic clinopyroxene (Cpx), which yield unusually high CaO (> 19 wt.%) in whole-rock chemistry. Petrographical and geochemical data suggest that Pasveh gabbros can be divided into two groups: free scapolite and scapolite-bearing gabbros. The second group has higher Na2O, K2O, and P2O5 relative to free scapolite ones and is enriched in LIL (large ion lithophile) and HFS (high field strength) elements. Two stages of metasomatism affected the primary composition of mafic rocks. Firstly, high temperature reaction caused to invert primary high Ti clinopyroxene to low Ti clinopyroxene+high Ti amphibole. This reaction was extensive and included all gabbroic samples. Hydrothermal fluids involved in this process can be derived from dehydration reactions of country rocks or from other magmas incorporated in the formation of Pasveh complex pluton. The second metasomatic stage relates to scapolitization of limited parts of gabbroic rocks. An external saline fluid, which is composed of major NaCl and minor KCl and P2O5 components, impacted locally on Pasveh gabbros and formed the second metasomatic stage. Possible sources of Na and Cl are primary evaporites or brines, which were present in the host sediments of the gabbros. The carbonate-free nature of these hydrothermal fluids suggests that hydrothermal fluids responsible for the formation of scapolite in Pasveh gabbros are derived from marine evaporitic parentage.

     

  • loading
  • Ahmadi-Khalaji, A., Esmaeily, D., Valizadeh, M. V., et al., 2007. Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(56): 859-877 http://www.onacademic.com/detail/journal_1000035413676010_7315.html
    Alavi, M., 1994. Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretations. Tectonophysics, 229(3-4): 211-238 doi: 10.1016/0040-1951(94)90030-2
    Alavi, M., 2004. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. American Journal of Science, 304(1): 1-20 doi: 10.2475/ajs.304.1.1
    Baker, J., Newton, R. C., 1995. Experimentally Determined Activity-Composition Relations for Ca-Rich Scapolite in the System CaAl2Si2O8-NaAlSi3O8-CaCO3 at 7 kbar. American Mineralogist, 80: 744-751 doi: 10.2138/am-1995-7-811
    Chamberlain, C. P., Docka, J. A., Post, J. E., et al., 1985. Scapolite: Alkali Atom Configurations, Antiphase Domains, and Compositional Variations. American Mineralogist, 70: 134-140 http://rruff.info/doclib/am/vol70/AM70_134.pdf
    Eftekharnejad, J., 1973. 1: 250 000 Geological Map of Mahabad. Geological Survey of Iran Press, Tehran
    Ghalamghash, J., Nedelec, A., Bellon, H., et al., 2009. The Urumieh Plutonic Complex (NW Iran): A Record of the Geodynamic Evolution of the Sanandaj-Sirjan Zone during Cretaceous Times—Part I: Petrogenesis and K/Ar Dating. Journal of Asian Earth Sciences, 35(5): 401-415 doi: 10.1016/j.jseaes.2009.02.002
    Heltz, R. T., 1973. Phase Relations of Basalts in Their Melting Range at PH2O=5 kb as a Function of Oxygen Fugacity-Part I. Mafic Phases. Journal of Petrology, 14(2): 249-302 doi: 10.1093/petrology/14.2.249
    Jiang, S. Y., Palmer, M. R., Xue, C. J., et al., 1994. Halogen-Rich Scapolite-Biotite Rocks from the Tongmugou Pb-Zn Deposit, Qinling, North-Western China: Implications for the Ore-Forming Process. Mineralogical Magazine, 58: 543-552 doi: 10.1180/minmag.1994.058.393.02
    Komada, N., Moecher, D. P., Westrum, E. F., et al., 1996. Thermodynamic Properties of Scapolites at Temperatures Ranging from 10 K to 1 000 K. Journal of Chemical Thermodynamics, 28(9): 941-973 doi: 10.1006/jcht.1996.0083
    Kullerud, K., Erambert, M., 1999. Cl-Scapolite, Cl-Amphibole, and Plagioclase Equilibria in Ductile Shear Zones at Nusfjord, Lofoten, Norway: Implications for Fluid Compositional Evolution during Fluid-Mineral Interaction in the Deep Crust. Geochimica et Cosmochimica Acta, 63(22): 3829-3844 doi: 10.1016/S0016-7037(99)00150-7
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 35: 219-246 doi: 10.1180/minmag.1997.061.405.13
    Mazhari, S. A., 2008. Petrogenesis of Naqadeh-Sardasht Plutons: [Dissertation]. Tarbiat Moallem University, Tehran. 216
    Mazhari, S. A., Bea, F., Amini, S., et al., 2009. The Eocene Bimodal Piranshahr Massif of the Sanandaj-Sirjan Zone, NW Iran: A Marker of the End of the Collision in the Zagros Orogen. Journal of the Geological Society, 166: 53-69 doi: 10.1144/0016-76492008-022
    Morimoto, N., 1989. Nomenclature of Pyroxenes. Canadian Mineralogist, 27: 143-156 http://pubs.geoscienceworld.org/canmin/article-pdf/27/1/143/3435215/143.pdf
    Otten, M. T., 1984. The Origin of Brown Hornblende in the Artfjaellet Gabbro and Dolerites. Contributions to Mineralogy and Petrology, 86(2): 189-199 doi: 10.1007/BF00381846
    Perchuck, L. L., Aranovich, L. Y., Podlesskii, K. K., et al., 1985. Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR. Journal of Metamorphic Geology, 3(3): 265-310 doi: 10.1111/j.1525-1314.1985.tb00321.x
    Seto, Y., Schimobayashi, N., Miyake, A., et al., 2004. Composition and I4/m-P42/n Phase Transition in Scapolite Solid Solutions. American Mineralogist, 89: 257-265 doi: 10.2138/am-2004-2-301
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of the Oceanic Basalts: Implications for Mantle Composition and Processes: In: Saunder, A. D., Norry, M. J., eds., Magmatism in the Oceanic Basalts. Geological Society, 42: 313-345
    Teertstra, D. K., Sherriff, B. L., 1997. Substitutional Mechanisms, Compositional Trends and the End-Member Formulae of Scapolite. Chemical Geology, 136(3-4): 233-260 doi: 10.1016/S0009-2541(96)00146-5
    Vanko, D. A., Bishop, F. C., 1982. Occurrence and Origin of Marialitic Scapolite in the Humboldt Lopolith, N.W. Nevada. Contributions to Mineralogy and Petrology, 81(4): 277-289 doi: 10.1007%2FBF00371682.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views(1214) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return