Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 2
Apr 2012
Turn off MathJax
Article Contents
Zhifang Xiong, Tiegang Li, Xavier Crosta. Cleaning of Marine Sediment Samples for Large Diatom Stable Isotope Analysis. Journal of Earth Science, 2012, 23(2): 161-172. doi: 10.1007/s12583-012-0241-x
Citation: Zhifang Xiong, Tiegang Li, Xavier Crosta. Cleaning of Marine Sediment Samples for Large Diatom Stable Isotope Analysis. Journal of Earth Science, 2012, 23(2): 161-172. doi: 10.1007/s12583-012-0241-x

Cleaning of Marine Sediment Samples for Large Diatom Stable Isotope Analysis

doi: 10.1007/s12583-012-0241-x
Funds:

the National Natural Science Foundation of China 40776031

the National Fundamental Research and Development Planning Project 2007CB815903

More Information
  • Corresponding author: Tiegang Li, tgli@qdio.ac.cn
  • Received Date: 02 Jun 2011
  • Accepted Date: 22 Sep 2011
  • Publish Date: 01 Apr 2012
  • Diatom stable isotope analysis offers considerable potential in palaeoceanography, particularly where carbonate material is scarce or absent. However, extracting pure diatom frustules free of external labile organic matter from marine sediments is an essential requirement for their applications as paleoenvironmental proxies. Here, based largely on previous work, we developed a method including physical separation and chemical oxidation steps to concentrate and clean pure large diatoms from laminated diatom mat and diatomaceous clay sediment samples for their stable isotope analysis. Using the physical separation techniques consisting of the removal of carbonate and excess organic matter, sieving, differential settling, and heavy liquid floatation, pure diatoms can be successfully isolated from the sediment samples with opal concentration more than 10%. Subsequent time oxidation experiment shows that labile organic matter coating pure diatom valves can be effectively removed with 30% H2O2 at 65 ℃ for 2 h. Measurements of δ13C after every step of physical separation demonstrate that contaminants and lost diatoms can influence the original diatom stable isotope signal, highlighting the importance of a visual check for dominant diatom size in the initial sample and purity in the final sample. Although the protocol described here was only applied to diatom mats or diatom oozes containing large diatoms (Ethmodiscus rex), we believe that this method can be adapted to common diatoms of general marine sediment samples.

     

  • loading
  • Brunelle, B. G., Sigman, D. M., Cook, M. S., et al., 2007. Evidence from Diatom-Bound Nitrogen Isotopes for Subarctic Pacific Stratification during the Last Ice Age and a Link to North Pacific Denitrification Changes. Paleoceanography, 22: PA1215, doi: 10.1029/2005PA001205
    Coplen, T. B., Hopple, J. A., Böhlke, J. K., et al., 2002. Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. Report 01-4222. In: U.S. Geological Survey Water-Resources Investigations. Reston, Virginia. 19–29
    Crosta, X., Koç, N., 2007. Diatoms: From Micropaleontology to Isotope Geochemistry. In: Hilaire-Marcel, C., De Vernal, A., eds., Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology Series. Elsevier, Amsterdam. 1: 327–369
    Crosta, X., Shemesh, A., Etourneau, J., et al., 2005. Nutrient Cycling in the Indian Sector of the Southern Ocean over the Last 50 000 Years. Global Biogeochemical Cycles, 19: GB3007, doi: 10.1029/2004GB002344
    Crosta, X., Shemesh, A., Salvignac, M. E., et al., 2002. Late Quaternary Variations of Elemental Ratios (C/Si and N/Si) in Diatom-Bound Organic Matter from the Southern Ocean. Deep-Sea Research II, 49: 1939–1952 http://www.researchgate.net/profile/Xavier_Crosta/publication/242022176_Late_Quaternary_variations_of_elemental_ratios_(CSi_and_NSi)_in_diatom-bound_organic_matter_from_the_Southern_Ocean/links/02e7e51cc0a63d18d0000000
    De La Rocha, C. L., 2006. Opal-Based Isotopic Proxies of Paleoenvironmental Conditions. Global Biogeochemical Cycles, 20: GB4S09, doi: 10.1029/2005GB002664
    Hatté, C., Hodgins, G., Jull, A. J. T., et al., 2008. Marine Chronology Based on 14C Dating on Diatoms Proteins. Marine Chemistry, 109: 143–151 doi: 10.1016/j.marchem.2007.12.008
    Juillet-Leclerc, A., 1986. Cleaning Process for Diatomaceous Samples. In: Ricard, M., ed., Proceedings of the 8th International Diatom Symposium, Paris. 733–736
    Kemp, A. E. S., Pearce, R. B., Grigorov, I., et al., 2006. Production of Giant Marine Diatoms and Their Export at Oceanic Frontal Zones: Implications for Si and C Flux from Stratified Oceans. Global Biogeochemical Cycles, 20: GB4S04, doi: 10.1029/2006GB002698
    Labeyrie, L. D., Juillet, A., 1982. Oxygen Isotopic Exchangeability of Diatom Valve Silica: Interpretation and Consequences for Paleoclimatic Studies. Geochimica et Cosmochimica Acta, 46: 967–975 doi: 10.1016/0016-7037(82)90052-7
    Leng, M. J., Barker, P. A., 2006. A Review of the Oxygen Isotope Composition of Lacustrine Diatom Silica for Palaeoclimate Reconstruction. Earth-Science Reviews, 75: 5–27 doi: 10.1016/j.earscirev.2005.10.001
    Leng, M. J., Swann, G. E. A., Hodson, M. J., et al., 2009. The Potential Use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change. Silicon, 1: 65–77 doi: 10.1007/s12633-009-9014-2
    Morley, D. W., Leng, M. J., Mackay, A. W., et al., 2005. Late Glacial and Holocene Environmental Change in the Lake Baikal Region Documented by Oxygen Isotopes from Diatom Silica. Global and Planetary Change, 46: 221–233 doi: 10.1016/j.gloplacha.2004.09.018
    Morley, D. W., Leng, M. J., Mackay, A. W., et al., 2004. Cleaning of Lake Sediment Samples for Diatom Oxygen Isotope Analysis. Journal of Paleolimnology, 31: 391–401 doi: 10.1023/B:JOPL.0000021854.70714.6b
    Nelson, D. M., Tréguer, P., Brzezinski, M. A., et al., 1995. Production and Dissolution of Biogenic Silica in the Ocean: Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles, 9(3): 359–372 doi: 10.1029/95GB01070
    Rings, A., Lücke, A., Schleser, G. H., 2004. A New Method for the Quantitative Separation of Diatom Frustules from Lake Sediments. Limnology and Oceanography: Methods, 2: 25–34 doi: 10.4319/lom.2004.2.25
    Robinson, R. S., Brunelle, B. G., Sigman, D. M., 2004. Revisiting Nutrient Utilization in the Glacial Antarctic: Evidence from a New Method for Diatom-Bound N Isotopic Analysis. Paleoceanography, 19: PA3001, doi: 10.1029/2003PA000996
    Robinson, R. S., Sigman, D. M., DiFiore, P. J., et al., 2005. Diatom-Bound 15N/14N: New Support for Enhanced Nutrient Consumption in the Ice Age Subantarctic. Paleoceanography, 20: PA3003, doi: 10.1029/2004PA001114
    Shemesh, A., Burckle, L. H., Hays, J. D., 1995. Late Pleistocene Oxygen Isotope Records of Biogenic Silica from the Atlantic Sector of the Southern Ocean. Paleoceanography, 10(2): 179–196 doi: 10.1029/94PA03060
    Shemesh, A., Macko, S. A., Charles, C. D., et al., 1993. Isotopic Evidence for Reduced Productivity in the Glacial Southern Ocean. Science, 262: 407–410 doi: 10.1126/science.262.5132.407
    Shemesh, A., Mortlock, R. A., Smith, R. J., et al., 1988. Determination of Ge/Si in Marine Siliceous Microfossils: Separation, Cleaning and Dissolution of Diatoms and Radiolaria. Marine Chemistry, 25(4): 305–323 doi: 10.1016/0304-4203(88)90113-2
    Sigman, D. M., Altabet, M. A., Francois, R., et al., 1999. The Isotopic Composition of Diatom-Bound Nitrogen in Southern Ocean Sediments. Paleoceanography, 14(2): 118–134 doi: 10.1029/1998PA900018
    Singer, A. J., Shemesh, A., 1995. Climatically Linked Carbon Isotope Variation during the Past 430 000 Years in Southern Ocean Sediments. Paleoceanography, 10(2): 171–177 doi: 10.1029/94PA03319
    Swann, G. E. A., Leng, M. J., 2009. A Review of Diatom δ18O in Palaeoceanography. Quaternary Science Reviews, 28: 384–398 doi: 10.1016/j.quascirev.2008.11.002
    Swann, G. E. A., Leng, M. J., Sloane, H. J., et al., 2008. Isotope Offsets in Marine Diatom δ18O over the Last 200 ka. Journal of Quaternary Science, 23(4): 389–400 doi: 10.1002/jqs.1185
    Swann, G. E. A., Leng, M. J., Sloane, H. J., et al., 2007. Diatom Oxygen Isotopes: Evidence of a Species Effect in the Sediment Record. Geochemistry Geophysics Geosystems, 8(6): Q06012, doi: 10.1029/2006GC001535
    Swann, G. E. A., Maslin, M. A., Leng, M. J., et al., 2006. Diatom δ18O Evidence for the Development of the Modern Halocline System in the Subarctic Northwest Pacific at the Onset of Major Northern Hemisphere Glaciation. Paleoceanography, 21: PA1009, doi: 10.1029/2005PA001147
    Tyler, J. J., Leng, M. J., Sloane, H. J., 2007. The Effects of Organic Removal Treatment on the Integrity of δ18O Measurements from Biogenic Silica. Journal of Paleolimnology, 37: 491–497 doi: 10.1007/s10933-006-9030-9
    Zhai, B., Li, T. G., Chang, F. M., et al., 2009. Vast Laminated Diatom Mat Deposits from the West Low-Latitude Pacific Ocean in the Last Glacial Period. Chinese Science Bulletin, 54(23): 4529–4533 http://www.cqvip.com/QK/86894X/200923/32215960.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(544) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return