Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 2
Apr 2012
Turn off MathJax
Article Contents
Shaojun Li, Hui Gao, Demin Xu, Fanzhen Meng. Comprehensive Determination of Reinforcement Parameters for High Cut Slope Based on Intelligent Optimization and Numerical Analysis. Journal of Earth Science, 2012, 23(2): 233-242. doi: 10.1007/s12583-012-0250-9
Citation: Shaojun Li, Hui Gao, Demin Xu, Fanzhen Meng. Comprehensive Determination of Reinforcement Parameters for High Cut Slope Based on Intelligent Optimization and Numerical Analysis. Journal of Earth Science, 2012, 23(2): 233-242. doi: 10.1007/s12583-012-0250-9

Comprehensive Determination of Reinforcement Parameters for High Cut Slope Based on Intelligent Optimization and Numerical Analysis

doi: 10.1007/s12583-012-0250-9
More Information
  • Corresponding author: Shaojun Li, sjli@whrsm.ac.cn
  • Received Date: 03 Dec 2011
  • Accepted Date: 29 Jan 2012
  • Publish Date: 01 Apr 2012
  • High cut slopes have been widely formed due to excavation activities during the period of immigrant relocation in the reservoir area of the Three Gorges, China. Effective reinforcement measures must be taken to guarantee the stability of the slopes and the safety of residents. This article presents a comprehensive method for integrating particle swarm optimization (PSO) and support vector machines (SVMs), combined with numerical analysis, to handle the determination of appropriate reinforcement parameters, which guarantee both slope stability and lower construction costs. The relationship between reinforcement parameters and slope factor of safety (FOS) and construction costs is investigated by numerical analysis and SVMs, PSO is adopted to determine the best SVM performance resulting in the lowest construction costs for a given FOS. This methodology is demonstrated by a practical reservoir high cut slope stabilised with anti-sliding piles, which is located at the Xingshan (兴山) County of Hubei (湖北) Province, China. The determination process of reinforcement parameters is discussed profoundly, and the pile spacing, length, and section dimension are obtained. The results provide a satisfactory reinforcement design, making it possible a signficant reduction in construction costs.

     

  • loading
  • Feng, X. T., Zhao, H. B., Li, S. J., 2004a. Modeling Non-Linear Displacement Time Series of Geo-Materials Using Evolutionary Support Vector Machines. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1087–1107, doi: 10.1016/j.ijrmms.2004.04.003
    Feng, X. T., Zhao, H. B., Li, S. J., 2004b. A New Displacement Back Analysis to Identify Mechanical Geo-Material Parameters Based on Hybrid Intelligent Methodology. International Journal for Numerical and Analytical Methods in Geomechanics, 28(11): 1141–1165, doi: 10.1002/nag.381
    Goh, A. T. C., Goh, S. H., 2007. Support Vector Machines: Their Use in Geotechnical Engineering as Illustrated Using Seismic Liquefaction Data. Computers and Geotechnics, 34(5): 410–421, doi: 10.1016/j.compgeo.2007.06.001
    Goodman, R. E., Bray, J. W., 1976. Toppling of Rock Slopes. In: Proceedings, Specialty Conference on Rock Engineering for Foundations and Slopes, Vol. 2. Boulder, CO: American Society of Civil Engineers. 201–233
    John, S. T., Sun, S. L., 2011. A Review of Optimization Methodologies in Support Vector Machines. Neurocomputing, 74(17): 3609–3618, doi: 10.1016/j.neucom.2011. 06.026
    Kennedy, Y. J., Eberhart, R. C., 1995. Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, Australia 1942–1948, doi: 10.1109/ICNN.1995.488968
    Lee, S. G., Hencher, S. R., 2009. The Repeated Failure of a Cut-Slope despite Continuous Reassessment and Remedial Works. Engineering Geology, 107(1–2): 16–41, doi: 10.1016/j.enggeo.2009.03.011
    Li, S. J., Feng, X. T., Zhao, H. B., et al., 2004. Forecast Analysis of Monitoring Data for High Slopes Based on Three-Dimensional Geological Information and Intelligent Algorithm. International Journal of Rock Mechanics and Mining Sciences, 41: 804–809, doi: 10.1016/j.ijrmms.2004.03.139
    Oztekin, B., Topal, T., Kolat, C., 2006. Assessment of Degradation and Stability of a Cut Slope in Limestone, Ankara-Turkey. Engineering Geology, 84(1–2): 12–30, doi: 10.1016/j.enggeo. 2005.11.012
    Seeber, C., Hartmann, H., Wei, X., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855, doi: 10.1007/s12583-010-0136-7
    Tang, H. M., 2003. Study on Reservoir Bank Collapse and Its Engineering Prevention in the Three Gorges Areas, Changjiang River. Quaternary Sciences, 23(6): 648–656 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200306007.htm
    Vapnik, V. N., 1995. The Nature of Statistical Learning Theory. Springer, New York
    Yin, Y. P., Kang, H. D., Chen, B., 2000. Reconstruction and Utilization of Hazardous Geomass at Relocation Sites of Population from the Three Gorges Project Site. Journal of Engineering Geology, 8(1): 73–80 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200001012.htm
    Zanbak, C., 1983. Design Charts for Rock Slopes Susceptible to Topping. Journal of Geotechnical Engineering, 109(8): 1039–1062 doi: 10.1061/(ASCE)0733-9410(1983)109:8(1039)
    Zhang, T. T., Yan, E. C., Cheng, J. T., et al., 2010. Mechanism of Reservoir Water in the Deformation of Hefeng Landslide. Journal of Earth Science, 21(6): 870–875, doi: 10.1007/s12583-010-0139-4
    Zhao, H. B., Ru, Z. L., Yin, S. D., 2007. Updated Support Vector Machine for Seismic Liquefaction Evaluation Based on the Penetration Tests. Marine Georesources & Geotechnology, 25(3–4): 209–220, doi: 10.1080/10641190701702303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(549) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return