Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 5
Oct 2012
Turn off MathJax
Article Contents
Guiju Wu, Xiangyun Hu, Guangpu Huo, Xiaochen Zhou. Geophysical Exploration for Geothermal Resources: An Application of MT and CSAMT in Jiangxia, Wuhan, China. Journal of Earth Science, 2012, 23(5): 757-767. doi: 10.1007/s12583-012-0282-1
Citation: Guiju Wu, Xiangyun Hu, Guangpu Huo, Xiaochen Zhou. Geophysical Exploration for Geothermal Resources: An Application of MT and CSAMT in Jiangxia, Wuhan, China. Journal of Earth Science, 2012, 23(5): 757-767. doi: 10.1007/s12583-012-0282-1

Geophysical Exploration for Geothermal Resources: An Application of MT and CSAMT in Jiangxia, Wuhan, China

doi: 10.1007/s12583-012-0282-1
Funds:

the National Natural Science Foundation of China 40974040

the Deep Exploration in China SinoProbe-01-03-02

the Ministry of Land and Resources of China 

More Information
  • Corresponding author: Xiangyun Hu, xyhu@cug.edu.cn
  • Received Date: 18 May 2011
  • Accepted Date: 26 Sep 2011
  • Publish Date: 01 Oct 2012
  • We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotellurics) for geophysical exploration in Jiangxia (江夏), which is located in new industrial developing suburb, where artificial noises are severe. In order to know deep buried structure, fracture status, and characteristics of underground geothermal development about 2 km, we acquired MT and CSAMT data to image subsurface structure through inversion and joint interpretation. The electrical terms of the 2D MT inversion can be divided into three ranges of resistivity values: (1) a highly resistive (> 350 Ω·m) layer mainly characteristic of limestone, dolomitic limestone, leuttrite, silicarenite, and packsand; (2) an intermediate resistivity (250–350 Ω·m) layer mainly constituted by siliceous shale, siltstone, battie, and ampelitic limestone; and (3) a low resistivity (20–250 Ω·m) layer, from surface to −100 m, which is related to lacustrine alluvium of Quaternary period; the deep low resistivity layer is interpreted to be representative of the geothermal field. The result of the 2D CSAMT inversion reveals two layers of different electrical resistivities: (1) the first resistive layer (20–250 Ω·m), which is related to lacustrine alluvium of Quaternary period and the heat source, and (2) the second resistive layer (250–3 000 Ω·m). The heat source appears to be bounded within the middle of exploration area and shows the N-S trend. Its depth ranges from more than 1.2 to less than 0.7 km, and its resistivity values range from 20 to 250 Ω·m in the northeast part of Jiangxia. Comparing the results of MT and CSAMT method, the positive anomalies are similar and can be assumed to be generated by the same source.

     

  • loading
  • Arango, C., Marcuello, A., Ledo, J., et al., 2009. 3D Magnetotelluric Characterization of the Geothermal Anomaly in the Llucmajor Aquifer System (Majorca, Spain). Journal of Applied Geophysics, 68(4): 479–488 doi: 10.1016/j.jappgeo.2008.05.006
    Bai, D. H., Meju, M. A., Liao, Z. J., 2001. Magnetotelluric Images of Deep Crustal Structure of the Rehai Geothermal Field near Tengchong, Southern China. Geophys. J. Int. , 147(3): 677–687 doi: 10.1046/j.0956-540x.2001.01568.x
    Bartel, L. C., Jacobson, R. D., 1987. Results of a Controlled-Source Audiofrequency Magnetotelluric Survey at the Puhimau Thermal Area, Kilauea Volcano, Hawaii. Geophysics, 52(5): 665–677 doi: 10.1190/1.1442334
    Bologna, M. S., Padilha, A. L., Vitorello, I., et al., 2011. Signatures of Continental Collisions and Magmatic Activity in Central Brazil as Indicated by a Magnetotelluric Profile across Distinct Tectonic Provinces. Precambrian Research, 185(1–2): 55–64
    Bromley, C., 1993. Tensor CSAMT Study of the Fault Zone between Waikite and Te Kopia Geothermal Fields. Journal of Geomagnetism and Geoelectricity, 45(9): 887–896 doi: 10.5636/jgg.45.887
    Cagniard, L., 1953. Basic Theory of the Magneto-Telluric Method of Geophysical Prospecting. Geophysics, 18(3): 605–635 doi: 10.1190/1.1437915
    Garg, S. K., Pritchett, J. W., Wannamaker, P. E., et al., 2007. Characterization of Geothermal Reservoirs with Electrical Surveys: Beowawe Geothermal Field. Geothermics, 36(6): 487–517 doi: 10.1016/j.geothermics.2007.07.005
    Goldstein, M. A., Strangway, D. W., 1975. Audio-Frequency Magnetotellurics with a Grounded Electric Dipole Source. Geophysics, 40(4): 669–683 doi: 10.1190/1.1440558
    Harinarayana, T., Abdul, A. K. K., Murthy, D. N., et al., 2006. Exploration of Geothermal Structure in Puga Geothermal Field, Ladakh Himalaya, India by Magnetotelluric Studies. Journal of Applied Geophysics, 58(4): 280–295 doi: 10.1016/j.jappgeo.2005.05.005
    Key, K., Weiss, C., 2006. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 71(6): G291–G299 doi: 10.1190/1.2348091
    Mogi, T., Nakama, S., 1993. Magnetotelluric Interpretation of the Geothermal System of the Kuju Volcano, Southwest Japan. Journal of Volcanology and Geothermal Research, 56(3): 297–308 doi: 10.1016/0377-0273(93)90022-J
    Newman, G. A., Gasperikova, E., Hoversten, G. M., et al., 2008. Three-Dimensional Magnetotelluric Characterization of the Coso Geothermal Field. Geothermics, 37(4): 369–399 doi: 10.1016/j.geothermics.2008.02.006
    Park, M. K., Seol, S. J., Kim, H. J., 2006. Sensitivities of Generalized RRI Method for CSAMT Survey. Geosciences Journal, 10(1): 75–84 doi: 10.1007/BF02910334
    Sandberg, S. K., Hohmannt, G. W., 1982. Controlled-Source Audiomagnetotellurics in Geothermal Exploration. Geophysics, 47(1): 100–116 doi: 10.1190/1.1441272
    Savin, C., Ritz, M., Join, J. L., et al., 2001. Hydrothermal System Mapped by CSAMT on Karthala Volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics, 48(3): 143–152 doi: 10.1016/S0926-9851(01)00078-7
    Sinharay, R. K., Srivastava, S., Bhattacharya, B. B., 2010. Audiomagnetotelluric Studies to Trace the Hydrological System of Thermal Fluid Flow of Bakreswar Hot Spring, Eastern India: A Case History. Geophysics, 75(5): B187–B195 doi: 10.1190/1.3431532
    Smith, J. T., Booker, J. R., 1991. Rapid Inversion of Two and Three-Dimensional Magnetotelluric Data. J. Geophys. Res. , 96(B3): 3905–3922 doi: 10.1029/90JB02416
    Spichak, V., Manzella, A., 2009. Electromagnetic Sounding of Geothermal Zones. Journal of Applied Geophysics, 68(4): 459–478 doi: 10.1016/j.jappgeo.2008.05.007
    Unsworth, M., 2010. Magnetotelluric Studies of Active Continent-Continent Collisions. Surveys in Geophysics, 31(2): 137–161 doi: 10.1007/s10712-009-9086-y
    Volpi, G., Manzella, A., Fiordelisi, A., 2003. Investigation of Geothermal Structures by Magnetotellurics (MT): An Example from the Mt. Amiata Area, Italy. Geothermics, 32(2): 131–145 http://www.sciencedirect.com/science/article/pii/S0375650503000166
    Vozoff, K., 1991. The Magnetotelluric Method. In: Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics: Applications (Vol. 2). Society of Exploration Geophysicists, Tulsa. 641–712
    Wannamaker, P. E., 1997a. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part Ⅰ: Implications for Structure of the Western Caldera. Geophysics, 62: 451–465 doi: 10.1190/1.1444156
    Wannamaker, P. E., 1997b. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part Ⅱ: Implications for CSAMT Methodology. Geophysics, 62: 466–476 doi: 10.1190/1.1444157
    Zhu, Q. J., Li, F. Z., Wang, X., 2009. Forward Modeling for the Static Effect of AMT and the Resolution of Conductive Folia. Geophysical & Geochemical Exploration, 33(2): 207–211 (in Chinese with English Abstract) http://www.wutanyuhuatan.com/EN/Y2009/V33/I2/207
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(826) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return