Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 5
Oct 2012
Turn off MathJax
Article Contents
Yang Cen, Yang Cen, Timothy M Kusky, Xingfu Jiang, Lu Wang. Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline. Journal of Earth Science, 2012, 23(5): 648-658. doi: 10.1007/s12583-012-0286-x
Citation: Yang Cen, Yang Cen, Timothy M Kusky, Xingfu Jiang, Lu Wang. Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline. Journal of Earth Science, 2012, 23(5): 648-658. doi: 10.1007/s12583-012-0286-x

Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline

doi: 10.1007/s12583-012-0286-x
Funds:

the Postdoctoral Science Foundation 20100471203

the Ministry of Land and Resources 1212010670104

the National Natural Science Foundation of China 91014002

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 41272242

Ministry of Education of China B07039

Ministry of Education of China TGRC201024

More Information
  • Corresponding author: Songbai Peng, psb200301@yahoo.com.cn
  • Received Date: 11 Nov 2011
  • Accepted Date: 18 Jan 2012
  • Publish Date: 01 Oct 2012
  • We report preliminary results of a geochemical study on banded iron formations (BIFs) in the Zhaojiayangpo (赵家阳坡) area from the Kongling (崆岭) Group in the northern Huangling (黄陵) anticline, on the northern margin of the Yangtze craton. The CL (cathodoluminescence) images of zircons mostly have sector zoning, fir-tree zoning and patched zoning, and a few show core-rim textures with rims having patched zoning. The calculated formation temperatures using the Ti-in-zircon thermometer are 660–808 ℃ (714 ℃ in average), all indicating that the BIFs underwent granulite facies metamorphism. The age of zircons with granulite facies metamorphism is 1 990±14 Ma by LA-ICP-MS U-Pb dating, indicating that there was a significant granulite facies tectonothermal event in the northern Huangling anticline in the Paleoproterozoic, which may be related with tectonic thermal events of the metamorphism caused by the assembly of the Columbia supercontinent with South China. Moreover, the REE pattern is characterized by depletion in LREE while relatively flat in HREE, LaN/YbN=0.26, with a positive Eu anomaly (Eu/Eu*=1.59), which reveals its hydrothermal sedimentation origin and it may have formed in the environment of submarine exhalation.

     

  • loading
  • Alibo, D. S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochim. Cosmochim. Acta, 63(3–4): 363–372 http://www.sciencedirect.com/science/article/pii/S0016703798002798
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chem. Geol. , 192(1–2): 59–79 http://www.sciencedirect.com/science/article/pii/S000925410200195X
    Bau, M., Möller, P., 1993. Rare Earth Element Systematics of the Chemically Precipitated Component in Early Precambrian Iron Formations and the Evolution of the Terrestrial Atmosphere-Hydrosphere-Lithosphere System. Geochim. Cosmochim. Acta, 57(10): 2239–2249 doi: 10.1016/0016-7037(93)90566-F
    Bau, M., 1993. Effects of Syn- and Post-Depositional Processes on the Rare-Earth Element Distribution in Precambrian Iron-Formations. Eur. J. Mineral. , 5: 257–267 doi: 10.1127/ejm/5/2/0257
    Bau, M., Dulski, P., Möller, P., 1995. Yttrium and Holmium in South Pacific Seawater: Vertical Distribution and Possible Fractionation Mechanisms. Chem. Erde, 55: 1–15 http://www.researchgate.net/publication/279903300_Yttrium_and_holmium_in_South_Pacific_seawater_vertical_distribution_and_possible_fractionation_mechanisms
    Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. , 79(1–2): 37–55 http://www.onacademic.com/detail/journal_1000035336308510_4376.html
    Bekker, A., Slack, J. F., Planavsky, N., et al., 2010. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 105(3): 467–508 doi: 10.2113/gsecongeo.105.3.467
    Bureau of Geology and Mineral Resources of Hubei Province, 1987. 1: 50 000 Geological Map of Eastern Xingshan and Shuiyuesi Area. The Geological Party of West Hubei, Yichang (in Chinese)
    Bureau of Geology and Mineral Resources of Hubei Province, 1994. 1: 50 000 Geological Map of Maopinghe Area. The Geological Party of West Hubei, Yichang (in Chinese)
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500 doi: 10.2113/0530469
    Derry, L. A., Jacobsen, S. B., 1990. The Chemical Evolution of Precambrian Seawater: Evidence from REEs in Banded Iron Formations. Geochim. Cosmochim. Acta, 54(11): 2965–2977 doi: 10.1016/0016-7037(90)90114-Z
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol. , 154(4): 429–437 doi: 10.1007/s00410-007-0201-0
    Frei, R., Dahl, P. S., Duke, E. F., et al., 2008. Trace Element and Isotopic Characterization of Neoarchean and Paleoproterozoic Iron Formations in the Black Hills (South Dakota, USA): Assessment of Chemical Change during 2.9-1.9 Ga Deposition Bracketing the 2.4–2.2 Ga First Rise of Atmospheric Oxygen. Precambrian Res. , 162(3–4): 441–474
    Fryer, B. J., 1977. Rare Earth Evidence in Iron-Formations for Changing Precambrian Oxidation States. Geochim. Cosmochim. Acta, 41(3): 361–367 doi: 10.1016/0016-7037(77)90263-0
    Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochim. Cosmochim. Acta, 63(13–14): 2071–2088 http://www.sciencedirect.com/science/article/pii/S0016703799001532
    Gao, S., Qiu, M., Ling, W. L., et al., 2001. The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of > 3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 31(1): 27–35 (in Chinese)
    Jiang, J. S., 1986. Isotopic Geochronology and Crustal Evolution of the Huangling Metamorphic Terrain. J. Changchun College of Geology, 3: 1–11 (in Chinese with English Abstract)
    Kato, Y., Ohta, I., Tsunematsu, T., et al., 1998. Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochim. Cosmochim. Acta, 62(21–22): 3475–3497 http://ea.c.u-tokyo.ac.jp/earth/Members/Isozaki/98Kato.pdf
    Klein, C., Beukes, N. J., 1989. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84(7): 1733–1774 doi: 10.2113/gsecongeo.84.7.1733
    Klein, C., 2005. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins. American Mineralogist, 90: 1473–1499 doi: 10.2138/am.2005.1871
    Li, F. X., Nie, X. W., 1987. The Geological Age and Stratigraphic Division of Kongling Group in Northern Part of Huangling Faulted Upwapping. Arch. Geology of the Hubei Province, 1(1): 28–41 (in Chinese with English Abstract)
    Li, S. X., Ji, S. K., Ma, Z. H., et al., 1986. Geology of Metamorphic Sedimentary Iron Deposit in Wutaishan Area. Jilin Science and Technology Publishing House, Changchun (in Chinese)
    Ling, W. L., Gao, S., Zhang, B. R., et al., 2000. Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chin. Sci. Bull. , 45(21): 2343–2348 (in Chinese) doi: 10.1360/csb2000-45-21-2343
    Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientica Sinica, 18(3): 233–241 (in Chinese with English Abstract)
    Pecoits, E., Gingras, M. K., Barley, M. E., et al., 2009. Petrography and Geochemistry of the Dales Gorge Banded Iron Formation: Paragenetic Sequence, Source and Implications for Palaeo-Ocean Chemistry. Precambrian Res. , 172(1–2): 163–187 http://www.onacademic.com/detail/journal_1000035432958410_a18b.html
    Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chin. Sci. Bull. , 54(5): 641–647 (in Chinese) doi: 10.1360/csb2009-54-5-641
    Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2–3): 577–594 http://www.sciencedirect.com/science/article/pii/S1342937X11002024
    Qiu, Y. M., Gao, S., McNaughton, N. J., et al., 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14 doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5–22 doi: 10.1016/S1342-937X(05)70883-2
    Rogers, J. J. W., Santosh, M., 2003. Supercontinent in Earth History. Gondwana Research, 6(3): 357–368 doi: 10.1016/S1342-937X(05)70993-X
    Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3–4): 373–380 http://www.onacademic.com/detail/journal_1000035049678010_49fc.html
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chem. Geol. , 184(1–2): 123–138 http://www.researchgate.net/profile/Daniela_Rubatto/publication/223526967_Rubatto_D._Zircon_trace_element_geochemistry_partitioning_with_garnet_and_the_link_between_U-Pb_ages_and_metamorphism._Chem._Geol._184_123138/links/0a85e537d3da6b9f3d000000.pdf
    Shen, Q. H., Song, H. X., Yang, C. H., et al., 2011. Petrochemical Characteristics and Geological Significations of Banded Iron Formations in the Wutai Mountain of Shanxi and Qian'an of Eastern Hebei. Acta Petrologica et Mineralogica, 30(2): 161–171 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSKW201102003.htm
    Slack, J. F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth. Planet. Sci. Lett. , 255(1–2): 243–256 http://www.sciencedirect.com/science/article/pii/S0012821X06008983
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford
    Trendall, A. F., 1983. Introduction. In: Trendall, A. F., Morris, R. C., eds., Iron-Formation: Facts and Problems. Elsevier, Amsterdam. 1–11
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contrib. Mineral. Petrol. , 151(4): 413–433 doi: 10.1007/s00410-006-0068-5
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chin. Sci. Bull. , 49(16): 1589–1604 (in Chinese) doi: 10.1360/csb2004-49-16-1589
    Wu, Y. B., Gao, S., Gong, H. J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. J. Metamorph. Geol. , 27(6): 461–477 doi: 10.1111/j.1525-1314.2009.00826.x
    Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chin. Sci. Bull. , 53(22): 2782–2792 (in Chinese) doi: 10.1360/csb2008-53-22-2782
    Yamaguchi, K. E., Ohmoto, H., 2000. Geochemistry of Rare Earth Elements in Precambrian Banded Iron Formations: I. Are the Ce Anomalies Real? First Astrobiology Science Conference, California. 296
    Yuan, H. H., Zhang, Z. L., Liu, W., et al., 1991. Direct Dating Method of Zircon Grains by 207Pb/206Pb. Mineral. Petrol. , 11(2): 72–79 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199102012.htm
    Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Res. , 146(1–2): 16–34 http://www.researchgate.net/profile/Yong-Fei_Zheng/publication/248450700_Zircon_isotope_evidence_for_3.5Ga_continental_crust_in_the_Yangtze_Craton_of_China/links/00b4952cbb5f026e05000000.pdf
    Zhang, S. B., 2008. Geochemistry of the Yangtze Continental Nucleus and Its Anatectic Granitoids: [Dissertation]. University of Science and Technology of China, Hefei (in Chinese with English Abstract)
    Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break-up of the Palaeo-Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11–12): 1331–1356 http://www.onacademic.com/detail/journal_1000035253141510_f1a3.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(3051) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return