Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 5
Oct 2012
Turn off MathJax
Article Contents
Hao Deng, Timothy M Kusky, Lu Wang, Songbai Peng, Xingfu Jiang, Junpeng Wang, Songjie Wang. Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution. Journal of Earth Science, 2012, 23(5): 676-695. doi: 10.1007/s12583-012-0287-9
Citation: Hao Deng, Timothy M Kusky, Lu Wang, Songbai Peng, Xingfu Jiang, Junpeng Wang, Songjie Wang. Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution. Journal of Earth Science, 2012, 23(5): 676-695. doi: 10.1007/s12583-012-0287-9

Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution

doi: 10.1007/s12583-012-0287-9
Funds:

the National Natural Science Foundation of China 91014002

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 41272242

Ministry of Education of China B07039

the Open Foundation of Ministry of Education TGRC201024

the Postdoctoral Science Foundation 20100471203

the Ministry of Land and Resources Foundation 1212010670104

More Information
  • Corresponding author: Timothy M Kusky, tkusky@gmail.com
  • Received Date: 23 Sep 2011
  • Accepted Date: 17 Dec 2011
  • Publish Date: 01 Oct 2012
  • The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dike complex (SDC), meta-pillow lavas with chert pods and layers, and tectonically intercalated marble. The SDC is a very important and significant part of the Miaowan ophiolitic sequence, and grades downward into gabbro and ultramafic rocks, and upward into meta-pillow lavas. Some dikes preserve one-way chilled margins, typical of extensional ophiolitic settings, whereas most preserve double chilled margins, in cases where the chilling direction can be determined. The SDC is mainly composed of meta-diabase (dolerite), meta-plagiogranite, and small amounts of meta-gabbro and ultramafic rocks. LA-ICP-MS zircon dating yields an upper intercept age of 1 026±79 Ma for one meta-plagiogranite, 1 043±23 Ma for a second meta-plagiogranite and 1 096±32 Ma for one meta-gabbro at the bottom of the SDC, suggesting formation of the SDC at circa 1 026–1 096 Ma, consistent with the recently determined formation age of the Miaowan ophiolite. Sparse geochemical data on the meta-diabase indicate that the protolith was a sub-alkaline, low-potassium tholeiite similar to mid-ocean ridge basalt (MORB). The chondrite-normalized rare earth element (REE) patterns of the meta-diabase are generally flat ((La/Yb)N=0.56–0.94), with a slight depletion in LREE, but no obvious Eu anomalies. Given that the meta-plagiogranites show evidence of formation in a suprasubduction zone environment, we suggest that the basalts were originally island arc tholeiites, perhaps formed in an extensional forearc setting. The geochemistry of the meta-diabase and plagiogranite from the sheeted dikes, together with regional relationships, all agree with the previous interpretations that the Miaowan ophiolite formed in a suprasubduction zone setting.

     

  • loading
  • Amri, I., Benoit, M., Ceuleneer, G., 1996. Tectonic Setting for the Genesis of Oceanic Plagiogranites: Evidence from a Paleospreading Structure in the Oman Ophiolite. Earth and Planetary Science Letters, 139(1–2): 177–194 doi: 10.1016/0012-821x(95)00233-3
    Coleman, R. G., Peterman, Z. E., 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80(8): 1099–1108 doi: 10.1029/JB080i008p01099
    Coleman, R. G., Donato, M. M., 1979. Oceanic Plagiogranite Revisited. In: Barker, F., ed., Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam. 149–168
    Dilek, Y., Moores, E. M., Furnes, H., 1998. Structure of Modern Oceanic Crust and Ophiolites and Implications for Faulting and Magmatism at Oceanic Spreading Centers. In: Buck, R., Karson, J., Delaney, P., et al., eds., Faulting and Magmatism at Mid-Ocean Ridges. American Geophysical Union Monograph, 106: 219–266
    Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3–4): 387–411 http://ci.nii.ac.jp/naid/20001226208
    Flagler, P. A., Spray, J. G., 1991. Generation of Plagiogranite by Amphibolite Anatexis in Oceanic Shear Zones. Geology, 19(1): 70–73 doi: 10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2
    France, L., Koepke, J., Ildefonse, B., et al., 2010. Hydrous Partial Melting in the Sheeted Dike Complex at Fast Spreading Ridges: Experimental and Natural Observations. Contributions to Mineralogy and Petrology, 160: 683–704 doi: 10.1007/s00410-010-0502-6
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088 http://www.sciencedirect.com/science/article/pii/S0016703799001532
    Gass, I. G., 1990. Ophiolites and Oceanic Lithosphere. In: Malpas, J., Moores, E. M., Panayiotou, A., et al., eds., Ophiolites, Oceanic Crustal Analogues. Proceedings of the Symposium "Troodos 1987", Nicosia. 1–10
    Glassley, W., 1974. Geochemistry and Tectonics of the Grescent Volcanic Rocks, Olympic Peninsula, Washington. Geologic Science of American Bulletin, 85: 785–794 doi: 10.1130/0016-7606(1974)85<785:GATOTC>2.0.CO;2
    Janney, P. E., Castillo, P. R., 1996. Basalts from the Central Pacific Basin: Evidence for the Origin of Cretaceous Igneous Complexes in Jurassic Western Pacific. Journal of Geophysical Research, 101: 2875–2893 doi: 10.1029/95JB03119
    Koepke, J., Feig, S. T., Snow, J., et al., 2004. Petrogenesis of Oceanic Plagiogranites by Partial Melting of Gabbros: An Experimental Study. Contributions to Mineralogy and Petrology, 146(4): 414–432 doi: 10.1007/s00410-003-0511-9
    Koepke, J., Berndt, J., Feig, S. T., et al., 2007. The Formation of SiO2-Rich Melts within the Deep Oceanic Crust by Hydrous Partial Melting of Gabbros. Contributions to Mineralogy and Petrology, 153: 67–84 doi: 10.1007/s00410-006-0135-y
    Kusky, T. M., Wang, L., Dilek, Y., et al., 2011. Application of the Modern Ophiolite Concept with Special Reference to Precambrian Ophiolites. Science China (Series D), 54: 315–341 doi: 10.1007/s11430-011-4175-4
    Li, W. X., Li, X. H., 2003a. Adakite Granites within the NE Jiangxi Ophiolites, South China: Geochemical and Nd Isotopic Evidence. Precambrian Research, 112: 29–44 http://www.sciencedirect.com/science/article/pii/S0301926802002061
    Li, W. X., Li, X. H., 2003b. Rock Types and Tectonic Significance of the Granitoids Rocks within Ophiolites. Advance in Earth Sciences, 18: 392–397 (in Chinese with English Abstract) http://www.researchgate.net/publication/313511815_Rock_types_and_tectonic_significance_of_the_granitoids_rocks_within_ophiolites
    Li, Z. X., Zhang, L., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407–410 doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
    Liu, X. M., Gao, S., Diwu, C. R., et al., 2008. Precambrian Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421–468 doi: 10.2475/04.2008.02
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1–2): 34–43 http://cms.kdis.edu.cn/cms/geology_cug/achievements/fabiaowenzhang/resource/414f3b8022107c51b3554fd7277929d6.pdf
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55: 1535–1546 (in Chinese) doi: 10.1007/s11434-010-3052-4
    Lu, Y. F., 2004. Geokit: A Geochemical Software Package Constructed by VAB. Geochemistry, 33(5): 459–464 (in Chinese with English Abstract) http://ci.nii.ac.jp/naid/10030173896
    Ludwig, K. R., 2003. User's Manual for Isoplot/EX Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, California. 1–70
    Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientica Sinica, 18(3): 233–241 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB703.000.htm
    O'Connor, J. T., 1965. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios. U. S. Geological Survey Professional Paper, Washington. 525B: 79–84
    Pearce, T. H., Gorman, B. E., Birkett, T. C., 1975. The TiO2-K2O-P2O5 Diagram: A Method of Discrimination between Oceanic and Non-Oceanic Basalts. Earth and Planetary Science Letters, 24(3): 419–426 doi: 10.1016/0012-821X(75)90149-1
    Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destractive Plate Boundaries. In: Thorpe, R. S., ed., Andesites. Wiley, New York. 528–548
    Pearce, J. A., 1983. The Role of Subcontinental Lithosphere in Paragenesis at Destructive Plate Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths (Shiva Geology Series). Birkhäuser Boston, Boston. 230–249
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983 doi: 10.1093/petrology/25.4.956
    Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. The Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline Area, Western Hubei Province, China. Geological Bulletin of China, 29(1): 8–20 (in Chinese with English Abstract) http://www.researchgate.net/profile/Songbai_Peng2/publication/287557049_Discovery_and_its_tectonic_significance_of_the_Proterozoic_Miaowan_ophiolites_in_the_southern_Huangling_anticline_western_Hubei_China/links/596d790aa6fdcc03edb6ce80/Discovery-and-its-tectonic-significance-of-the-Proterozoic-Miaowan-ophiolites-in-the-southern-Huangling-anticline-western-Hubei-China.pdf
    Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2–3): 577–594 http://www.sciencedirect.com/science/article/pii/S1342937X11002024
    Robinson, P. T., Malpas, J., Dilek, Y., et al., 2008. The Significance of Sheeted Dike Complexes in Ophiolites. GSA Today, 18(11): 4–10 doi: 10.1130/GSATG22A.1
    Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. John Wiley & Sons, New York. 155
    Rollinson, H., 2009. New Models for the Genesis of Plagiogranites in the Oman Ophiolite. Lithos, 112(3–4): 603–614 http://www.onacademic.com/detail/journal_1000035065882310_c91b.html
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geological Science of London Special Publication, 42: 313–345
    Wang, J. P., Kusky, T. M., Polat, A., et al., 2012. Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 23(5): 696–704 doi: 10.1007/s12583-012-0288-8
    Wang, X. F., Chen, X. H., Zhang, R. J., et al., 2002. Precious Geological Relic Sits Protection and Archean-Mesozoic Multiple Stratigraphic Division and Sea Level Change along Yangtze River, Three Gorges Area. Geological Public House, Beijing (in Chinese with English Abstract)
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343 doi: 10.1016/0009-2541(77)90057-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(1026) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return