Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 5
Oct 2012
Turn off MathJax
Article Contents
Junpeng Wang, Timothy M Kusky, Ali Polat, Lu Wang, Songbai Peng, Xingfu Jiang, Hao Deng, Songjie Wang. Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 2012, 23(5): 696-704. doi: 10.1007/s12583-012-0288-8
Citation: Junpeng Wang, Timothy M Kusky, Ali Polat, Lu Wang, Songbai Peng, Xingfu Jiang, Hao Deng, Songjie Wang. Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 2012, 23(5): 696-704. doi: 10.1007/s12583-012-0288-8

Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China

doi: 10.1007/s12583-012-0288-8
Funds:

the China Postdoctoral Science Foundation 20100471203

the Ministry of Land and Resources 1212010670104

the National Natural Science Foundation of China 91014002

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 41272242

Ministry of Education of China B07039

Ministry of Education of China TGRC201024

More Information
  • Corresponding author: Timothy M Kusky, tkusky@gmail.com
  • Received Date: 13 Oct 2011
  • Accepted Date: 23 Dec 2011
  • Publish Date: 01 Oct 2012
  • The epidosites are interpreted to form in upflow zones at the base of ore-forming oceanic hydrothermal systems that vent as black smokers on the sea floor. This study presents new field, major and trace element, and oxygen isotope data for the recently discovered epidosites in the ca. 1.0 Ga Miaowan (庙湾) ophiolite located near the northern margin of the Yangtze craton. The epidosites occur mainly in the cores of strongly deformed, lensoidal amphibolites. Field observations, major and trace elements and oxygen isotopes suggest that the epidosites were formed by metasomatism of ocean floor basalts, diabase dykes, and gabbros during seafloor hydrothermal alteration.

     

  • loading
  • Banerjee, N. R., Gillis, K. M., Muehlenbachs, K., 2000. Discovery of Epidosites in a Modern Oceanic Setting, the Tonga Forearc. Geology, 28(2): 151–154 doi: 10.1130/0091-7613(2000)28<151:DOEIAM>2.0.CO;2
    Bettison-Varga, L., Varga, R. J., Schiffman, P., 1992. Relation between Ore-Forming Hydrothermal Systems and Extensional Deformation in the Solea Graben Spreading Center, Troodos Ophiolite, Cyprus. Geology, 20(11): 987–990 doi: 10.1130/0091-7613(1992)020<0987:RBOFHS>2.3.CO;2
    Deng, H., Kusky, T. M., Wang, L., et al., 2012. Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution. Journal of Earth Science, 23(5): 676–695 doi: 10.1007/s12583-012-0287-9
    Harper, G. D., Bowman, J. R., Kuhns, R., 1988. A Field, Chemical, and Stable Isotope Study of Subseafloor Metamorphism of the Josephine Ophiolite, California-Oregon. Journal of Geophysical Research, 93(B5): 4625–4656 doi: 10.1029/JB093iB05p04625
    Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2012. Geological Features and Deformational Ages of the Basal Thrust Belt of the Miaowan Ophiolite in the Southern Huangling Anticline and Its Tectonic Implications. Journal of Earth Science, 23(5): 705–718 doi: 10.1007/s12583-012-0289-7
    Lu, Y. F., 2004. Geokit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 459–464 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=DQHX200405003&dbcode=CJFD&year=2004&dflag=pdfdown
    Nehlig, P., Juteau, T., Bendel, V., et al., 1994. The Root Zones of Oceanic Hydrothermal Systems: Constraints from the Samail Ophiolite (Oman). Journal of Geophysical Research, 99(B3): 4703–4713 doi: 10.1029/93JB02663
    Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2): 577–594
    Polat, A., Appel, P. W. U., Frei, R., et al., 2007. Field and Geochemical Characteristics of the Mesoarchean (~3 075 Ma) Ivisaartoq Greenstone Belt, Southern West Greenland: Evidence for Seafloor Hydrothermal Alteration in a Supra-Subduction Oceanic Crust. Gondwana Research, 11(1–2): 69–91
    Richardson, C. J., Cann, J. R., Richards, H. G., et al., 1987. Metal-Depleted Root Zones of the Troodos Ore-Forming Hydrothermal Systems, Cyprus. Earth and Planetary Science Letters, 84(2–3): 243–253 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0012821X87900896&originContentFamily=serial&_origin=article&_ts=1425219021&md5=bba0d947e9a8826c1a9e176f314713a3
    Schiffman, P., Smith, B. M., Varga, R. J., et al., 1987. Geometry, Conditions and Timing of Off-Axis Hydrothermal Metamorphism and Ore Deposition in the Solea Graben. Nature, 325: 423–425 doi: 10.1038/325423a0
    Schiffman, P., Smith, B. M., 1988. Petrology and Oxygen Isotope Geochemistry of a Fossil Seawater Hydrothermal System within the Solea Graben, Northern Troodos Ophiolite, Cyprus. Journal of Geophysical Research, 93(B5): 4612–4624 doi: 10.1029/JB093iB05p04612
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geol. Soc. Spec. Publ., London, 42: 313–345
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(1015) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return