Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 5
Oct 2012
Turn off MathJax
Article Contents
Xingfu Jiang, Songbai Peng, Timothy M. Kusky, Lu Wang, Junpeng Wang, Hao Deng. Geological Features and Deformational Ages of the Basal Thrust Belt of the Miaowan Ophiolite in the Southern Huangling Anticline and Its Tectonic Implications. Journal of Earth Science, 2012, 23(5): 705-718. doi: 10.1007/s12583-012-0289-7
Citation: Xingfu Jiang, Songbai Peng, Timothy M. Kusky, Lu Wang, Junpeng Wang, Hao Deng. Geological Features and Deformational Ages of the Basal Thrust Belt of the Miaowan Ophiolite in the Southern Huangling Anticline and Its Tectonic Implications. Journal of Earth Science, 2012, 23(5): 705-718. doi: 10.1007/s12583-012-0289-7

Geological Features and Deformational Ages of the Basal Thrust Belt of the Miaowan Ophiolite in the Southern Huangling Anticline and Its Tectonic Implications

doi: 10.1007/s12583-012-0289-7
Funds:

the Postdoctoral Science Foundation 20100471203

the Ministry of Land and Resources of China 1212010670104

the National Natural Science Foundation of China 91014002

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 41272242

Ministry of Education of China B07039

Ministry of Education of China TGRC201024

More Information
  • Corresponding author: Songbai Peng, psb200301@yahoo.com.cn
  • Received Date: 05 Nov 2011
  • Accepted Date: 07 Jan 2012
  • Publish Date: 01 Oct 2012
  • The stratigraphic, structural and metamorphic features of the basal thrust belt of the ca. 1.0 Ga Miaowan (庙湾) ophiolite in the southern Huangling (黄陵) anticline, show that it can be divided into three tectono-lithostratigraphic units from north to south: mélange/wildflysch rock units, flysch rock units, and sedimentary rock units of the autochthonous (in situ) stable continental margin. The three units underwent thrust-related deformation during emplacement of the Miaowan ophiolitic nappe, with kinematic indicators indicating movement from the NNE to SSW, with the metamorphic grade reaching greenschist-amphibolite facies. LA-ICP-MS U-Pb geochronology of zircons from granite pebbles in the basal thrust-related wildflysch yield ages of 859±26, 861±12 and 871±16 Ma; whereas monzonitic granite clasts yield an age of 813±14 Ma. This indicates that the formation age of the basal thrust belt is not older than 813±14 Ma, and is earlier than the earliest formation time of the majority of the Neoproterozoic Huangling granitoid intrusive complex, which did not experience penetrative ductile deformation. These results suggest that the northern margin of the Yangtze craton was involved in collisional tectonics that continued past 813 Ma. This may be related to the amalgamation of the Yangtze craton with the Rodinia supercontinent. Through comparative study of lithology, zircon geochronology, REE patterns between granodiorite and tonalite pebbles in the basal thrust-zone conglomerate, it can be concluded that the pebbles are the most similar to the Huanglingmiao (黄陵庙) rock-mass (unit), implying that they may have come from Huanglingmiao rock-mass. Zircon cores yield xenocrystic ages of 2 074±120 Ma, suggesting that the protolith of the Neoproterozoic Huangling granitoid intrusive complex may have originated from partial melting of older basement rocks, that is to say there may be Paleoproterozoic crystalline basement in the southern Huangling anticline. The ages of xenocrystic zircons in the granite pebbles in the basal-thrust conglomerate/wildflysch show a correlation with the age spectra from Australia, implying that the terrain that collided with the northern margin of the Yangtze craton and emplaced the Miaowan ophiolite at ca. 813 Ma may have been derived from the Australian segment of Rodinia.

     

  • loading
  • Chapple, W. M., 1978. Mechanics of Thin-Skinned Fold-and-Thrust Belts. Geological Society of American Bulletin, 89: 1189–1198 doi: 10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO;2
    Chen, Y. L., Luo, Z. H., Liu, C., 2001. New Recognition of Kangding-Mianning Metamorphic Complexes from Sichuan, Western Yangtze Craton: Evidence from Nd Isotopic Compositon. Earth Science-Journal of China University of Geosciences, 26(3): 279–285 (in Chinese with English Abstract)
    Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15: 228–242 doi: 10.1016/j.gr.2008.06.001
    Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88(B2): 1153–1172, doi: 10.1029/JB088iB02p01153
    Feng, D. Y., Li, Z. C., Zhang, Z. C., 1991. Intrusive Ages and Isotopic Characteristics of Massives in the South of Huangling Granitoids. Hubei Geology, 5(2): 1–12 (in Chinese with English Abstract)
    Fu, G. Q., Yuan, H. H., Li, S. L., 1993. Discovery of Archean Granite-Greenstone Terrain of the Northern Huangling Block, Western Hubei Province, China. J. Mineral. Petrol. , 13(1): 5–13 (in Chinese with English Abstract)
    Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088
    Gao, S., Qiu, Y. M., Ling, W. L., et al., 2001. The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of > 3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 31(1): 27–35 (in Chinese)
    Golonka, J., 2004. Plate Tectonic Evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1–4): 235–273 http://www.geo.edu.ro/sgr/mod/downloads/PDF/Golonka-TPh-2004.pdf
    Hans, L., 2010. Jura, Alps and the Boundary of the Adria Subplate. Tectonophysics, 484(1–4): 223–239 http://www.onacademic.com/detail/journal_1000035440838910_5399.html
    Hinton, R. W., Upton, B. G. J., 1991. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geoehimica et Cosmoehimica Acta, 55(11): 3287–3302 doi: 10.1016/0016-7037(91)90489-R
    Hoskin, P. W. O., Ireland, T. I., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630 doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
    Jiang, J. S., 1986. Isotopic Geochronology and Crustal Evolution of Huangling Metamorphic Terrain. Journal of Changchun College of Geology, 3: 1–11 (in Chinese with English Abstract)
    Li, X. H., Liang, X. R., Sun, M., et al., 2000. Geochronology and Geochemistry of Single-Grain Zircons: Simultaneous In-Situ Analysis of U-Pb Age and Trace Elements by LAM-ICP-MS. Eur. J. Mineral. , 12: 1015–1024, doi: 10.1127/0935-1221/2000/0012-1015
    Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382–398 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252980354.html
    Li, Y. L., Zhou, H. W., Li, X. H., et al., 2007. 40Ar-39Ar Plateau Ages of Biotite and Amphibole from Tonalite of Huangling Granitoids and Their Cooling Curve. Acta Petrologica Sinica, 23(5): 1067–1074 (in Chinese with English Abstract)
    Li, Z. C., Wang, G. H., Zhang, Z. C., 2002. Isotopic Age Spectrum of the Huangling Granitic Batholith, Western Hubei. Geology and Mineral Resources of South China, 3: 19–28 (in Chinese with English Abstract)
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke-Up Rodinia. Precambrian Research, 122(1–4): 85–109
    Ling, W. L., Gao, S., Zhang, B. R., et al., 2000. Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chinese Science Bulletin, 45(21): 2343–2348 (in Chinese) doi: 10.1360/csb2000-45-21-2343
    Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Breakup of the Rodinia Supercontinent. Precambrian Research, 122(1–4): 111–140 http://www.sciencedirect.com/science/article/pii/S030192680200222X
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1–2): 34–43 http://cms.kdis.edu.cn/cms/geology_cug/achievements/fabiaowenzhang/resource/414f3b8022107c51b3554fd7277929d6.pdf
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571, doi: 10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546, doi: 10.1007/s11434-010-3052-4
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley
    Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151–161 (in Chinese with English Abstract)
    Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(5): 641–647, doi:10.1007/s11434-008-0558-0 (in Chinese)
    Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1): 8–20 (in Chinese with English Abstract)
    Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577–594, doi: 10.1016/j.gr.2011.07.010
    Peresson, H., Decker, K., 1997. The Tertiary Dynamics of the Northern Eastern Alps (Austria): Changing Palaeostresses in a Collisional Plate Boundary. Tectonophysics, 272(2–4): 125–157 http://adsabs.harvard.edu/abs/1997Tectp.272..125P
    Qiu, Y. M., Gao, S., Mcnaughton, N. J., et al., 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14, doi:10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    Rodgers, J., 1990. Fold-and-Thrust Belts in Sedimentary, Part Ⅰ: Typical Examples. American Journal of Science, 290: 321–359, doi: 10.2475/ajs.290.4.321
    Rodgers, J., 1991. Fold-and-Thrust Belts in Sedimentary, Part Ⅱ: Other Examples, Especially Variants. American Journal of Science, 291: 825–886, doi: 10.2475/ajs.291.9.825
    Samson, S. D., Coler, D. G., Speer, J. A., 1995. Geochemical and Nd-Sr-Pb Isotopic Composition of Alleghanian Granites of the Southern Appalachians: Origin, Tectonic Setting, and Source Characterization. Earth and Planetary Science Letters, 134(3–4): 359–376 http://www.sciencedirect.com/science/article/pii/0012821X9500124U
    Sasseville, C., Tremblay, A., Clauer, N., et al., 2008. K-Ar Age Constraints on the Evolution of Polydeformed Fold-Thrust Belts: The Case of the Northern Appalachians (Southern Quebec). Journal of Geodynamics, 45(2–3): 99–119, doi: 10.1016/j.jog.2007.07.004
    Simony, P. S., Carr, S. D., 2011. Cretaceous to Eocene Evolution of the Southeastern Canadian Cordillera: Continuity of Rocky Mountain Thrust Systems with Zones of "In-Sequence" Mid-Crustal Flow. Journal of Structural Geology, 33(9): 1417–1434 doi: 10.1016/j.jsg.2011.06.001
    Song, C. Z., Liu, G. S., Niu, M. L., et al., 2002. Cenozoic Structures and Dynamics on the Northern Margin of Qinling-Dabie Orogenic Belt. Geological Bulletin of China, 21(8–9): 530–535 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252294480.html
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geological Society, London, Special Publications, 42: 313–345, doi: 10.1144/GSL.SP.1989.042.01.19
    Sun, X. M., Wu, G. Y., Hao, F. J., et al., 2004. Epochs and Space-Time Migrating of Meso-Cenozoic Thrust-Nappe Tectonics in the North Qinling-Dabie Orogen. Chinese Journal of Geology, 39(1): 63–76 (in Chinese with English Abstract)
    Thakur, V. C., 1980. Tectonics of the Central Crystallines of Western Himalaya. Tectonophysics, 62(1–2): 141–154
    Tremblay, A., Ruffet, G., Bédard, J. H., 2011. Obduction of Tethyan-Type Ophiolites-A Case-Study from the Thetford-Mines Ophiolitic Complex, Quebec Appalachians, Canada. Lithos, 125(1-2): 10–26 doi: 10.1016/j.lithos.2011.01.003
    Wang, X. F., Ma, D. Q., Chen, X. H., et al., 2001. Precambrian Evolution of the Huangling Arch, China and Its Relation to the Rodinia Breakup and Assembly. Gondwana Research, 4(4): 816–817 doi: 10.1016/S1342-937X(05)70603-1
    Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. J. Mineral. Petrol., 21(3): 135–145 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-KWYS200103020.htm
    Wei, Y. X., Peng, S. B., Jiang, X. F., et al., 2012. SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting. Journal of Earth Science, 23(5): 659–675 doi: 10.1007/s12583-012-0284-z
    Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23, doi: 10.1111/j.1751-908X.1995.tb00147.x
    Wu, Y. B., Chen, D. G., Xia, Q. K., et al., 2002. Trace Element Analysis of Zircons from Eclogite in Huangzhen in Dabie: Trace Element Characteristics of Eclogite-Facies Metamorphic Zircons. Chinese Science Bulletin, 47(11): 859–863 (in Chinese) doi: 10.1360/csb2002-47-11-859
    Wu, Y. B., Chen, D. G., Xia, Q. K., et al., 2003. Granulite in the Dabie Mountains Huangtuling Zircon LAM-ICP-MS Trace Element Analysis and Pb-Pb Dating. Science in China (Series D), 33(1): 20–28 (in Chinese)
    Xie, D. N., He, M. X., Zhou, L. F., et al., 2006. Characteristics of Overthrust Structures on Northern Edge of East Qinling-Dabie Orogenic Belt and Hydrocarbon Potentials. Oil & Gas Geology, 27(1): 48–55 (in Chinese with English Abstract) http://ogg.pepris.com/EN/Y2006/V27/I1/48
    Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782–2792 (in Chinese) doi: 10.1360/csb2008-53-22-2782
    Ye, P. S., 2004. Ophiolites and Thrust System of Middle Lhasa Block: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 16–17 (in Chinese with English Abstract)
    Zhang, C. H., Song, H. L., 1997. Mesozoic Thrust Tectonic in Yanshan Intraplate Orogen and the Differences between Them and Those of Foreland Fold-and-Thrust Belt. Earth Science-Journal of China University of Geosciences, 22(1): 33–36 (in Chinese with English Abstract)
    Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3–4): 265–288
    Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113: 347–368, doi: 10.1016/j.lithos.2009.04.024
    Zhang, S. B., Zheng, Y. F., Zhao, Z. F., 2010. Temperature Effect over Garnet Effect on Uptake of Trace Elements in Zircon of TTG-Like Rocks. Chemical Geology, 274: 108–125, doi: 10.1016/j.chemgeo.2010.04.002
    Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115: 177–189, doi: 10.1016/j.lithos.2009.12.001
    Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of the Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1–10 (in Chinese) doi: 10.1007/s11434-007-0015-5
    Zhou, Z. Y., Yang, J. X., Zhou, H. W., et al., 2007. Significance on Hubei Huangling Complex in the Rodinia Supercontinent of Evolution. Resources Environment and Engineering, 21(4): 380–384 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(3340) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return