Agterberg, F. P., 1981. Geochemical Crustal Abundance Models. Transactions, Society of Mining Engineers of AIME, 268: 1823-1830 |
Agterberg, F. P., 1993. Calculation of the Variance of Mean Values for Blocks in Regional Resource Evaluation Studies. Nonrenewable Resources, 2(1): 312-324 doi: 10.1007/BF02257541 |
Agterberg, F. P., 1994. FORTRAN Program for the Analysis of Point Patterns with Correction for Edge Effects. Computers & Geosciences, 20(2): 229-245 doi:org/ 10.1016/0098-3004(94)90008-6 |
Agterberg, F. P., 1995. Multifractal Modeling of the Sizes and Grades of Giant and Supergiant Deposits. International Geology Review, 37(1): 1-8, doi: 10.1080/00206819509465388 |
Agterberg, F. P., 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science-Journal of China University of Geosciences, 36(2): 189-200, doi: 10.3799/dqkx.2011.020 |
Agterberg, F. P., 2012. Sampling and Analysis of Chemical Element Concentration Distribution in Rock Units and Orebodies. Nonlinear Processes in Geophysics, 19: 23-44, doi: 10.5194/npg-19-23-2012 |
Agterberg, F. P., Cheng, Q. M., Wright, D. F., 1993. Fractal Modelling of Mineral Deposits. In: Elbrond, J., Tang, X., eds., Proceedings APCOM XX1V, International Symposium on the Application of Computers and Operations Re search in the Mineral Industries, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal. 1: 43-53 |
Agterberg, F. P., Chung, C. F., Fabbri, A. G., et al., 1972. Geomathematical Evaluation of Copper and Zinc Potential of the Abitibi Area, Ontario and Quebec. Geological Survey of Canada Paper. Dept. of Energy, Mines and Resources, Yukon |
Baddeley, A., Turner, R., 2012. Package 'Spatstat', Manual, Version 1.30.0 (Released 2012-12-23) [PDF]. http://140.247.115.171 |
Baddeley, A., Møller, J., Pakes, A. G., 2008. Properties of Residuals for Spatial Point Processes. Annals of the Institute of Statistical Mathematics, 60(3): 627-649 doi: 10.1007/s10463-007-0116-6 |
Baddeley, A., 2007. Spatial Point Processes and Their Applications. Lecture Notes in Mathematics: 1-75 doi: 10.1007/978-3-540-38175-4_1 |
Barton, C. C., La Pointe, P. R., 1995. Fractals in Petroleum Geology and Earth Processes. Plenum, New York. 317 http://www.onacademic.com/detail/journal_1000035972008910_a5e5.html |
Blenkinsop, T. G., 1995. Fractal Measures for Size and Spatial Distributions of Gold Mines: Economic Implications. In: Blenkinsop, T. G., Tromp, P. L., eds., Sub-Saharan Economic Geology. Special Publication Geological Society of Zimbabwe, 3: 177-186 |
Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114 doi: 10.1130/0091-7613(1991) |
Cheng, Q. M., 1994. Multifractal Modeling and Spatial Analysis with GIS: Gold Mineral Potential Estimation in the Mitchell-Sulphurets Area, Northwestern British Columbia: [Dissertation]. University of Ottawa, Ottawa |
Cheng, Q. M., 2008. Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments. Mathematical Geoscience, 40(5): 195-225 doi: 10.1007/s11004-008-9172-6 |
Cheng, Q. M., 2005. A New Model for Incorporating Spatial Association and Singularity in Interpolation of Exploratory Data. Quantitative Geology and Geostatistics, 14(5): 1017-1025 doi: 10.1007/978-1-4020-3610-1_106 |
Cheng, Q. M., 2012. Multiplicative Cascade Processes and Information Integration for Predictive Mapping. Nonlinear Processes in Geophysics, 19: 57-68, doi: 10.5194/npg-19-57-2012 |
Cheng, Q. M., Agterberg, F. P., 1995. Multifractal Modelling and Spatial Point Processes. Mathematical Geology, 27(7): 831-845 doi: 10.1007/BF02087098 |
Cheng, Q. M., Agterberg, F. P., 2009. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments. Computers & Geosciences, 35(2): 234-244, doi:org/ 10.1016/j.cageo.2008.02.034 |
Cressie, N. A. C., 2001. Statistics for Spatial Data. Wiley, New York |
Diggle, P. J., 1983. Statistical Analysis of Spatial Point Patterns. Academic Press, London. 72 http://www.onacademic.com/detail/journal_1000036469586210_ec13.html |
Falconer, K. J., 2003. Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester |
Feder, J., 1988. Fractals. Plenum, New York |
Gupta, V. K., Troutman, B. M., Dawdy, D. R., 2007. Towards a Nonlinear Geophysical Theory of Floods in River Networks: An Overview of 20 Years of Progress. In: Tsonis, A. A., Elsner, J. B., eds., Nonlinear Dynamics in Geosciences. Springer, New York. 121-150 doi: 10.1007/978-34918-3-8 |
Korvin, G., 1992. Fractal Models in the Earth Sciences. Elsevier, Amsterdam |
Lovejoy, S., Schertzer, D., 2007. Scaling and Multifractal Fields in the Solid Earth and Topography. Nonlinear Processes in Geophysics, 14(4): 465-502 doi: 10.5194/npg-14-465-2007 |
Malamud, B. D., Morein, G., Turcotte, D. L., 1998. Forest Fires: An Example of Self-Organized Critical Behavior. Science, 281(5384): 1840-1842, doi: 10.1126/science.281.5384.1840 |
Mandelbrot, B. B., 1975. Les Objects Fractals: Forme, Hazard et Dimension. Flammarion, Paris. 1-19 http://www.researchgate.net/publication/37406136_Les_objets_fractals_Forme_hasard_et_dimension |
Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. Freeman, San Francisco. 262 |
Mandelbrot, B. B., 1995. The Statistics of Natural Resources and the Law of Pareto. In: Barton, C. C., La Pointe, P. R., eds., Fractals in Petroleum Geology and the Earth Sciences. Plenum, New York. 1-12 |
Mandelbrot, B. B., 1999. Multifractals and 1/f Noise. Springer, New York |
Park, N. W., Chi, K. H., 2008. Quantitative Assessment of Landslide Susceptibility Using High-Resolution Remote Sensing Data and a Generalized Additive Model. International Journal of Remote Sensing, 29(1): 247-264 doi: 10.1080/01431160701227661 |
Pickering, G., Bull, J. M., Sanderson, D. J., 1995. Sampling Power-Law Distributions. Tectonophysics, 248(1-2): 1-20 doi:org/ 10.1016/0040-1951(95)00030-Q |
Quandt, R. E., 1966. Old and New Methods of Estimation and the Pareto Distribution. Metrica, 10(1): 55-82, doi: 10.1007/BF02613419 |
Raines, G. L., 2008. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?Natural Resources Research, 17(2): 87-97 doi: 10.1007/s11053-008-9067-8 |
Ripley, B. D., 1976. The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 13(2): 255-266 doi: 10.2307/3212829 |
Ripley, B. D., 1981. Spatial Statistics. Wiley-Interscience, New York |
Ripley, B. D., 1988. Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511624131 |
Rowlingson, B. S., Diggle, P. J., 1991. Estimating the KFunction for a Univariate Spatial Point Process on an Arbitrary Polygon. Lancaster University Mathematics Department Technical Report MA91/58. Lancaster University, Lancaster. 1-15 |
Rowlingson, B. S., Diggle, P. J., 1993. Spalncs: Spatial Point Pattern Analysis Code in S-Plus. Computers & Geosciences, 19(5): 627-655 doi:org/ 10.1016/0098-3004(93)90099-Q |
Rundle, J. B., Turcotte, D. L., Shcherbakov, R., et al., 2003. Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault Systems. Reviews of Geophysics, 41: 1019 doi:10.1029/2003 RG000135 |
Sharma, A. S., 1995. Assessing the Magnetosphere's Nonlinear Behavior: Its Dimension is Low, Its Predictability, High. Reviews of Geophysics, 33(S1): 645 doi: 10.1029/95RG00495 |
Singer, D., Menzie, W. D., 2010. Quantitative Mineral Resource Assessments: An Integrated Approach. Oxford University Press, New York |
Stoyan, D., Kendall, W. S., 1987. Stochastic Geometry and Its Applications. Wiley, Chichester. 125 http://destiorof.ru/tujyhedo.pdf |
Turcotte, D. L., 1997. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge |
Uritsky, V. M., Donovan, E., Klimas, A. J., 2008. Scale-Free and Scale-Dependent Modes of Energy Release Dynamics in the Night Time Magnetosphere. Geophysical Research Letters, 35 (21): L21101, 1-5 http://gsfcir.gsfc.nasa.gov/download/authors/18620/scale-free-and-scale-dependent.pdf |
Walsh, J., Watterson, J., Yielding, G., 1991. The Importance of Small-Scale Faulting in Regional Extension. Nature, 351: 391-393 doi: 10.1038/351391a0 |