Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 1
Feb 2013
Turn off MathJax
Article Contents
Frederik P. AGTERBERG. Fractals and spatial statistics of point patterns. Journal of Earth Science, 2013, 24(1): 1-11. doi: 10.1007/s12583-013-0305-6
Citation: Frederik P. AGTERBERG. Fractals and spatial statistics of point patterns. Journal of Earth Science, 2013, 24(1): 1-11. doi: 10.1007/s12583-013-0305-6

Fractals and spatial statistics of point patterns

doi: 10.1007/s12583-013-0305-6
More Information
  • The relationship between fractal point pattern modeling and statistical methods of parameter estimation in point-process modeling is reviewed. Statistical estimation of the cluster fractal dimension by using Ripley's K-function has advantages in comparison with the more commonly used methods of box-counting and cluster fractal dimension estimation because it corrects for edge effects, not only for rectangular study areas but also for study areas with curved boundaries determined by regional geology. Application of box-counting to estimate the fractal dimension of point patterns has the disadvantage that, in general, it is subject to relatively strong "roll-off" effects for smaller boxes. Point patterns used for example in this paper are mainly for gold deposits in the Abitibi volcanic belt on the Canadian Shield. Additionally, it is proposed that, worldwide, the local point patterns of podiform Cr, volcanogenic massive sulphide and porphyry copper deposits, which are spatially distributed within irregularly shaped favorable tracts, satisfy the fractal clustering model with similar fractal dimensions. The problem of deposit size (metal tonnage) is also considered. Several examples are provided of cases in which the Pareto distribution provides good results for the largest deposits in metal size-frequency distribution modeling.

     

  • loading
  • Agterberg, F. P., 1981. Geochemical Crustal Abundance Models. Transactions, Society of Mining Engineers of AIME, 268: 1823-1830
    Agterberg, F. P., 1993. Calculation of the Variance of Mean Values for Blocks in Regional Resource Evaluation Studies. Nonrenewable Resources, 2(1): 312-324 doi: 10.1007/BF02257541
    Agterberg, F. P., 1994. FORTRAN Program for the Analysis of Point Patterns with Correction for Edge Effects. Computers & Geosciences, 20(2): 229-245 doi:org/ 10.1016/0098-3004(94)90008-6
    Agterberg, F. P., 1995. Multifractal Modeling of the Sizes and Grades of Giant and Supergiant Deposits. International Geology Review, 37(1): 1-8, doi: 10.1080/00206819509465388
    Agterberg, F. P., 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science-Journal of China University of Geosciences, 36(2): 189-200, doi: 10.3799/dqkx.2011.020
    Agterberg, F. P., 2012. Sampling and Analysis of Chemical Element Concentration Distribution in Rock Units and Orebodies. Nonlinear Processes in Geophysics, 19: 23-44, doi: 10.5194/npg-19-23-2012
    Agterberg, F. P., Cheng, Q. M., Wright, D. F., 1993. Fractal Modelling of Mineral Deposits. In: Elbrond, J., Tang, X., eds., Proceedings APCOM XX1V, International Symposium on the Application of Computers and Operations Re search in the Mineral Industries, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal. 1: 43-53
    Agterberg, F. P., Chung, C. F., Fabbri, A. G., et al., 1972. Geomathematical Evaluation of Copper and Zinc Potential of the Abitibi Area, Ontario and Quebec. Geological Survey of Canada Paper. Dept. of Energy, Mines and Resources, Yukon
    Baddeley, A., Turner, R., 2012. Package 'Spatstat', Manual, Version 1.30.0 (Released 2012-12-23) [PDF]. http://140.247.115.171
    Baddeley, A., Møller, J., Pakes, A. G., 2008. Properties of Residuals for Spatial Point Processes. Annals of the Institute of Statistical Mathematics, 60(3): 627-649 doi: 10.1007/s10463-007-0116-6
    Baddeley, A., 2007. Spatial Point Processes and Their Applications. Lecture Notes in Mathematics: 1-75 doi: 10.1007/978-3-540-38175-4_1
    Barton, C. C., La Pointe, P. R., 1995. Fractals in Petroleum Geology and Earth Processes. Plenum, New York. 317 http://www.onacademic.com/detail/journal_1000035972008910_a5e5.html
    Blenkinsop, T. G., 1995. Fractal Measures for Size and Spatial Distributions of Gold Mines: Economic Implications. In: Blenkinsop, T. G., Tromp, P. L., eds., Sub-Saharan Economic Geology. Special Publication Geological Society of Zimbabwe, 3: 177-186
    Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114 doi: 10.1130/0091-7613(1991)
    Cheng, Q. M., 1994. Multifractal Modeling and Spatial Analysis with GIS: Gold Mineral Potential Estimation in the Mitchell-Sulphurets Area, Northwestern British Columbia: [Dissertation]. University of Ottawa, Ottawa
    Cheng, Q. M., 2008. Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments. Mathematical Geoscience, 40(5): 195-225 doi: 10.1007/s11004-008-9172-6
    Cheng, Q. M., 2005. A New Model for Incorporating Spatial Association and Singularity in Interpolation of Exploratory Data. Quantitative Geology and Geostatistics, 14(5): 1017-1025 doi: 10.1007/978-1-4020-3610-1_106
    Cheng, Q. M., 2012. Multiplicative Cascade Processes and Information Integration for Predictive Mapping. Nonlinear Processes in Geophysics, 19: 57-68, doi: 10.5194/npg-19-57-2012
    Cheng, Q. M., Agterberg, F. P., 1995. Multifractal Modelling and Spatial Point Processes. Mathematical Geology, 27(7): 831-845 doi: 10.1007/BF02087098
    Cheng, Q. M., Agterberg, F. P., 2009. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments. Computers & Geosciences, 35(2): 234-244, doi:org/ 10.1016/j.cageo.2008.02.034
    Cressie, N. A. C., 2001. Statistics for Spatial Data. Wiley, New York
    Diggle, P. J., 1983. Statistical Analysis of Spatial Point Patterns. Academic Press, London. 72 http://www.onacademic.com/detail/journal_1000036469586210_ec13.html
    Falconer, K. J., 2003. Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester
    Feder, J., 1988. Fractals. Plenum, New York
    Gupta, V. K., Troutman, B. M., Dawdy, D. R., 2007. Towards a Nonlinear Geophysical Theory of Floods in River Networks: An Overview of 20 Years of Progress. In: Tsonis, A. A., Elsner, J. B., eds., Nonlinear Dynamics in Geosciences. Springer, New York. 121-150 doi: 10.1007/978-34918-3-8
    Korvin, G., 1992. Fractal Models in the Earth Sciences. Elsevier, Amsterdam
    Lovejoy, S., Schertzer, D., 2007. Scaling and Multifractal Fields in the Solid Earth and Topography. Nonlinear Processes in Geophysics, 14(4): 465-502 doi: 10.5194/npg-14-465-2007
    Malamud, B. D., Morein, G., Turcotte, D. L., 1998. Forest Fires: An Example of Self-Organized Critical Behavior. Science, 281(5384): 1840-1842, doi: 10.1126/science.281.5384.1840
    Mandelbrot, B. B., 1975. Les Objects Fractals: Forme, Hazard et Dimension. Flammarion, Paris. 1-19 http://www.researchgate.net/publication/37406136_Les_objets_fractals_Forme_hasard_et_dimension
    Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. Freeman, San Francisco. 262
    Mandelbrot, B. B., 1995. The Statistics of Natural Resources and the Law of Pareto. In: Barton, C. C., La Pointe, P. R., eds., Fractals in Petroleum Geology and the Earth Sciences. Plenum, New York. 1-12
    Mandelbrot, B. B., 1999. Multifractals and 1/f Noise. Springer, New York
    Park, N. W., Chi, K. H., 2008. Quantitative Assessment of Landslide Susceptibility Using High-Resolution Remote Sensing Data and a Generalized Additive Model. International Journal of Remote Sensing, 29(1): 247-264 doi: 10.1080/01431160701227661
    Pickering, G., Bull, J. M., Sanderson, D. J., 1995. Sampling Power-Law Distributions. Tectonophysics, 248(1-2): 1-20 doi:org/ 10.1016/0040-1951(95)00030-Q
    Quandt, R. E., 1966. Old and New Methods of Estimation and the Pareto Distribution. Metrica, 10(1): 55-82, doi: 10.1007/BF02613419
    Raines, G. L., 2008. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?Natural Resources Research, 17(2): 87-97 doi: 10.1007/s11053-008-9067-8
    Ripley, B. D., 1976. The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 13(2): 255-266 doi: 10.2307/3212829
    Ripley, B. D., 1981. Spatial Statistics. Wiley-Interscience, New York
    Ripley, B. D., 1988. Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511624131
    Rowlingson, B. S., Diggle, P. J., 1991. Estimating the KFunction for a Univariate Spatial Point Process on an Arbitrary Polygon. Lancaster University Mathematics Department Technical Report MA91/58. Lancaster University, Lancaster. 1-15
    Rowlingson, B. S., Diggle, P. J., 1993. Spalncs: Spatial Point Pattern Analysis Code in S-Plus. Computers & Geosciences, 19(5): 627-655 doi:org/ 10.1016/0098-3004(93)90099-Q
    Rundle, J. B., Turcotte, D. L., Shcherbakov, R., et al., 2003. Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault Systems. Reviews of Geophysics, 41: 1019 doi:10.1029/2003 RG000135
    Sharma, A. S., 1995. Assessing the Magnetosphere's Nonlinear Behavior: Its Dimension is Low, Its Predictability, High. Reviews of Geophysics, 33(S1): 645 doi: 10.1029/95RG00495
    Singer, D., Menzie, W. D., 2010. Quantitative Mineral Resource Assessments: An Integrated Approach. Oxford University Press, New York
    Stoyan, D., Kendall, W. S., 1987. Stochastic Geometry and Its Applications. Wiley, Chichester. 125 http://destiorof.ru/tujyhedo.pdf
    Turcotte, D. L., 1997. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge
    Uritsky, V. M., Donovan, E., Klimas, A. J., 2008. Scale-Free and Scale-Dependent Modes of Energy Release Dynamics in the Night Time Magnetosphere. Geophysical Research Letters, 35 (21): L21101, 1-5 http://gsfcir.gsfc.nasa.gov/download/authors/18620/scale-free-and-scale-dependent.pdf
    Walsh, J., Watterson, J., Yielding, G., 1991. The Importance of Small-Scale Faulting in Regional Extension. Nature, 351: 391-393 doi: 10.1038/351391a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(2759) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return