Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 1
Feb 2013
Turn off MathJax
Article Contents
Zhonghe Pang, Lijuan Yuan, Tianming Huang, Yanlong Kong, Jilai Liu, Yiman Li. Impacts of Human Activities on the Occurrence of Groundwater Nitrate in an Alluvial Plain: A Multiple Isotopic Tracers Approach. Journal of Earth Science, 2013, 24(1): 111-124. doi: 10.1007/s12583-013-0310-9
Citation: Zhonghe Pang, Lijuan Yuan, Tianming Huang, Yanlong Kong, Jilai Liu, Yiman Li. Impacts of Human Activities on the Occurrence of Groundwater Nitrate in an Alluvial Plain: A Multiple Isotopic Tracers Approach. Journal of Earth Science, 2013, 24(1): 111-124. doi: 10.1007/s12583-013-0310-9

Impacts of Human Activities on the Occurrence of Groundwater Nitrate in an Alluvial Plain: A Multiple Isotopic Tracers Approach

doi: 10.1007/s12583-013-0310-9
Funds:

the National Natural Science Foundation of China 40872162

the National Natural Science Foundation of China 41202183

the Knowledge Innovation Program of the Chinese Academy of Sciences kzcx2-yw-127

More Information
  • Corresponding author: Zhonghe Pang: z.pang@mail.iggcas.ac.cn
  • Received Date: 23 Sep 2011
  • Accepted Date: 15 Jan 2012
  • Publish Date: 01 Feb 2013
  • Nitrate pollution is a severe problem in areas with intensive agricultural activities. This study focuses on nitrate occurrence and its constraints in a selected alluvial fan using chemical data combined with environmental isotopic tracers (18O, 3H, and 15N). Results show that groundwater nitrate in the study area is as high as 258.0 mg/L (hereafter NO3) with an average of 86.8 mg/L against national drinking water limit of 45 mg/L and a regional baseline value of 14.4 mg/L. Outside of the riparian zone, nitrate occurrence is closely related to groundwater circulation and application of chemical fertilizer. High groundwater nitrate is found in the recharge area, where nitrate enters into groundwater through vertical infiltration, corresponding to high 3H and enriched 18O in the water. In the riparian zone, on the contrary, the fate of groundwater nitrate is strongly affected by groundwater level. Based on two sampling transects perpendicular to the riverbank, we found that the high level of nitrate corresponds to the deeper water table (25 m) near the urban center, where groundwater is heavily extracted. Groundwater nitrate is much lower (< 12.4 mg/L) at localities with a shallow water table (5 m), which is likely caused by denitrification in the aquifer.

     

  • loading
  • Aravena, R., Robertson, W. D., 1998. Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic System Plume. Ground Water, 36(6): 975–982, doi: 10.1111/j.1745-6584.1998.tb02104.x
    Böhlke, J. K., 2002. Groundwater Recharge and Agricultural Contamination. Hydrogeology Journal, 10(1): 153–179, doi: 10.1007/s10040-001-0183-3
    Böttcher, J., Strebel, O., Voerkelius, S., et al., 1990. Using Isotope Fractionation of Nitrate-Nitrogen and Nitrate-Oxygen for Evaluation of Microbial Denitrification in a Sandy Aquifer. Journal of Hydrology, 114(3–4): 413–424
    Bethke, C. M., Johnson, T. M., 2008. Groundwater Age and Groundwater Age Dating. Annual Review of Earth and Planetary Sciences, 36: 121–152 doi: 10.1146/annurev.earth.36.031207.124210
    Burkart, M. R., Kolpin, D. W., 1993. Hydrologic and Land-Use Factors Associated with Herbicides and Nitrate in Near-Surface Aquifers. Journal of Environmental Quality, 22(4): 646–656 http://www.onacademic.com/detail/journal_1000039796804510_e15d.html
    Chen, J. Y., Tang, C. Y., Sakura, Y., et al., 2005. Nitrate Pollution from Agriculture in Different Hydrogeological Zones of the Regional Groundwater Flow System in the North China Plain. Hydrogeology Journal, 13(3): 481–492, doi: 10.1007/s10040-004-0321-9
    Chen, J. Y., Tang, C. Y., Sakura, Y., et al., 2004. Spatial Geochemical and Isotopic Characteristics Associated with Groundwater Flow in the North China Plain. Hydrological Processes, 18(16): 3133–3146, doi: 10.1002/hyp.5753
    Chen, J. Y., Tang, C. Y., Shen, Y. J., et al., 2003. Use of Water Balance Calculation and Tritium to Examine the Dropdown of Groundwater Table in the Piedmont of the North China Plain (NCP). Environmental Geology, 44(5): 564–571, doi: 10.1007/s00254-003-0792-3
    Chen, Z. Y., Qi, J. X., Xu, J. M., et al., 2003. Paleoclimatic Interpretation of the Past 30 ka from Isotopic Studies of the Deep Confined Aquifer of the North China Plain. Applied Geochemistry, 18(7): 997–1009 doi: 10.1016/S0883-2927(02)00206-8
    Chen, Z. Y., Wang, Y., Liu, J., et al., 2010. Groundwater Changes of Selected Groundwater Systems in Northern China in Recent Fifty Years. Quaternary Sciences, 30(1): 115–126, doi: 10.3969/j.issn.1001-7410.2010.01.11
    Chesnaux, R., Allen, D. M., Graham, G. ., 2007. Assessment of the Impact of Nutrient Management Practices on Nitrate Contamination in the Abbotsford-Sumas Aquifer. Environmental Science & Technology, 41: 7229–7234 http://www.researchgate.net/profile/Romain_Chesnaux/publication/5804401_Assessment_of_the_impact_of_nutrient_management_practices_on_nitrate_contamination_in_the_Abbotsford-Sumas_aquifer/links/55058b390cf2d60c0e6c50a5.pdf
    Domagalski, J., Zhou, X. Q., Lin, C., et al., 2001. Comparative Water-Quality Assessment of the Hai He River Basin in the People's Republic of China and Three Similar Basins in the United States. US Dept. of the Interior, US Geological Survey, Washington D.C.
    Eckhardt, D. A. V., Stackelberg, P. E., 1995. Relation of Ground-Water Quality to Land Use on Long Island, New York. Ground Water, 33(6): 1019–1033, doi: 10.1111/j.1745-6584.1995.tb00047.x
    Hu, C. S., Cheng, Y. S., Lu, G., et al., 2001. On the Nitrate-N Accumulated Characteristics in Deep Soil Layer of Winter Wheat Field in Taihang Piedmont. Chinese Journal of Eco-Agriculture, 9: 19–20
    Kim, K. H., Yun, S. T., Choi, B. Y., et al., 2009. Hydrochemical and Multivariate Statistical Interpretations of Spatial Controls of Nitrate Concentrations in a Shallow Alluvial Aquifer around Oxbow Lakes (Osong Area, Central Korea). Journal of Contaminant Hydrology, 107(3–4): 114–127
    Liu, C. M., Yu, J. J., Kendy, E., 2001. Groundwater Exploita tion and Its Impact on the Environment in the North China Plain. Water International, 26(2): 265–272, doi: 10.1080/02508060108686913
    Lu, Y. T., Tang, C. Y., Chen, J. Y., et al., 2008. Spatial Characteristics of Water Quality, Stable Isotopes and Tritium Associated with Groundwater Flow in the Hutuo River Alluvial Fan Plain of the North China Plain. Hydrogeology Journal, 16(5): 1003–1015, doi: 10.1007/s10040-008-0292-3
    McLay, C. D. A., Dragten, R., Sparling, G., et al., 2001. Predicting Groundwater Nitrate Concentrations in a Region of Mixed Agricultural Land Use: A Comparison of Three Approaches. Environmental Pollution, 115(2): 191–204 doi: 10.1016/S0269-7491(01)00111-7
    Mengis, M., Schif, S. L., Harris, M., et al., 1999. Multiple Geochemical and Isotopic Approaches for Assessing Ground Water NO3 Elimination in a Riparian Zone. Ground Water, 37(3): 448–457, doi: 10.1111/j.1745-6584.1999.tb01124.x
    Rivett, M. O., Buss, S. R., Morgan, P., et al., 2008. Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Research, 42(16): 4215–4232 doi: 10.1016/j.watres.2008.07.020
    Silva, S. R., Kendall, C., Wilkison, D. H., et al., 2000. A New Method for Collection of Nitrate from Fresh Water and the Analysis of Nitrogen and Oxygen Isotope Ratios. Journal of Hydrology, 228(1–2): 22–36
    Wang, B. G., Jin, M. G., Nimmo, J. R., et al., 2008. Estimating Groundwater Recharge in Hebei Plain, China under Varying Land Use Practices Using Tritium and Bromide Tracers. Journal of Hydrology, 356(1–2): 209–222
    Wang, S. Q., Song, X. F., Wang, Q. X., et al., 2009. Shallow Groundwater Dynamics in North China Plain. Journal of Geographical Sciences, 19: 175–188 doi: 10.1007/s11442-009-0175-0
    Xu, Q. H., Wu, C., Yang, X. L., et al., 1996. Palaeochannels on the North China Plain: Relationships between Their Development and Tectonics. Geomorphology, 18(1): 27–35 doi: 10.1016/0169-555X(95)00149-Y
    Zhang, W. L., Tian, Z. X., Zhang, N., et al., 1996. Nitrate Pollution of Groundwater in Northern China. Agriculture Ecosystems & Environment, 59(3): 223–231 http://eurekamag.com/pdf.php?pdf=002905535
    Zhang, Y. M., Hu, C. S., Mao, R. Z., et al., 2003. Nitrogen, Phosphorus and Potassium Cycling and Balance in Farmland Ecosystem at the Piedmont of Taihang. Chinese Journal of Applied Ecology, 14: 1863–1867 http://europepmc.org/abstract/med/14997634
    Zhao, S. H., 2010. Sustainable Utilization of Groundwater Resource at Tangshan. Haihe Water Resources, 4: 8–30 (in Chinese)
    Zhou, S. L., Wu, Y. C., Wang, Z. M., et al., 2008. The Nitrate Leached below Maize Root Zone is Available for Deep-Rooted Wheat in Winter Wheat-Summer Maize Rotation in the North China Plain. Environmental Pollution, 152(3): 723–730 doi: 10.1016/j.envpol.2007.06.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(897) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return