Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 1
Feb 2013
Turn off MathJax
Article Contents
Kaichang Di, Zongyu Yue, Zhaoqin Liu, Shuliang Wang. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 2013, 24(1): 125-135. doi: 10.1007/s12583-013-0316-3
Citation: Kaichang Di, Zongyu Yue, Zhaoqin Liu, Shuliang Wang. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 2013, 24(1): 125-135. doi: 10.1007/s12583-013-0316-3

Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data

doi: 10.1007/s12583-013-0316-3
Funds:

the National Natural Science Foundation of China 41171355

the National Natural Science Foundation of China 41002120

More Information
  • Corresponding author: Kaichang Di: kcdi@irsa.ac.cn
  • Received Date: 19 Jun 2012
  • Accepted Date: 11 Oct 2012
  • Publish Date: 01 Feb 2013
  • A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent geological studies.

     

  • loading
  • Alexander, D. A., Deen, R. G., Andres, P. M., et al., 2006. Processing of Mars Exploration Rover Imagery for Science and Operations Planning. Journal of Geophysical Research—Planets, 111(E2): E02S02, doi: 10.1029/2005JE002462
    Anderson, R. C., Castano, R., Stough, T., et al., 2001. Using Scaled Visual Texture for Autonomous Rock Clustering. Lunar and Planetary Science XXXII, Houston, http://www.lpi.usra.edu/meetings/lpsc2001/pdf/2103.pdf
    Castano, R., Anderson, R. C., Fox, J., et al., 2002. Automating Shape Analysis of Rocks on Mars. Lunar and Planetary Science XXXIII, Houston, http://www.lpi.usra.edu/meetings/lpsc2002/pdf/2000.pdf
    Castano, R., Judd, M., Estlin, T., et al., 2005. Current Results from a Rover Science Data Analysis System. In: IEEE Aerospace Conference, Montana, http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/39275/1/05-0185.pdf
    Castano, R., Estlin, T., Anderson, R. C., et al., 2007. Onboard Autonomous Rover Science. In: Proceedings of IEEE Aerospace Conference, http://marstech.jpl.nasa.gov/publications/CastanoIEEE-Aero2007.pdf
    Cheng, Y. Z., 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8): 790–799 doi: 10.1109/34.400568
    Comaniciu, D., Ramesh, V., Meer, P., 2000. Real-Time Tracking of Non-Rigid Objects Using Mean Shift. In: Conference on Computer Vision and Pattern Recognition, Hilton Head, SC. 142–149
    Comaniciu, D., Ramesh, V., Meer, P., 2001. The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. Computer Vision, 1: 438–445
    Comaniciu, D., Meer, P., 2002. Mean Shift: A Robust Approach toward Feature Space Analysis. Pattern Analysis and Machine Intelligence, 24(5): 603–619 doi: 10.1109/34.1000236
    Comaniciu, 2009. Code for the Edge Detection and Image Segmentation System. http://coewww.rutgers.edu/riul/research/code/EDISON/doc/help.html [Accessed September 19, 2012]
    Di, K., Xu, F., Wang, J., et al., 2008. Photogrammetric Processing of Rover Imagery of the 2003 Mars Exploration Rover Mission. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2): 181–201, doi:10.1016/j.isprsjprs.2007.07. 007
    Fitzgibbon, A., Pilu, M., Fisher, R. B., 1999. Direct Least-Square Fitting of Ellipses. Pattern Analysis and Machine Intelligence, 21(5): 476–480 doi: 10.1109/34.765658
    Fox, J., Castano, R., Anderson, R. C., 2002. Onboard Autonomous Rock Shape Analysis for Mars Rovers. In: Proceedings of IEEE Aerospace Conference, Montana. 2036–2052
    Fukanaga, K., Hostetler, L. D., 1975. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transactions on Information Theory, 21(1): 32–40 doi: 10.1109/TIT.1975.1055330
    Golombek, M. P., Huertas, A., Marlow, J., et al., 2008, Size-Frequency Distributions of Rocks on the Northern Plains of Mars with Special Reference to Phoenix Landing Surfaces. Journal of Geophysical Research—Planets, 13(E00A09): 32, doi: 10.1029/2007JE003065
    Gor, V., Castano, R., Manduchi, R., et al., 2001. Autonomous Rock Detection for Mars Terrain. In: Space 2001, American Institute of Aeronautics and Astronautics, Albuquerque, NM, USA
    Gulick, V. C., Morris, R. L., Ruzon, M. A., et al., 2001. Autonomous Image Analyses during the 1999 Marsokhod Rover Field Test. Journal of Geophysical Research, 106(E4): 7745–7763, doi: 10.1029/1999JE001182
    Hong, Y., Yi, J., Zhao, D., 2007. Improved Mean Shift Segmentation Approach for Natural Images. Applied Mathematics and Computation, 185(2): 940–952 doi: 10.1016/j.amc.2006.07.038
    Li, R., Squyres, S. W., Arvidson, R. E., et al., 2005. Initial Results of Rover Localization and Topographic Mapping for the 2003 Mars Exploration Rover Mission. Photogrammetric Engineering & Remote Sensing, 71(10): 1129–1142 http://www.asprs.org/wp-content/uploads/pers/2005journal/oct/2005_oct_1129-1142.pdf
    Li, R., Di, K., Howard, A. B., et al., 2007. Rock Modeling and Matching for Autonomous Long-Range Mars Rover Localization. Journal of Field Robotics, 24(3): 187–203, doi: 10.1002/rob.20182
    Manduchi, R., Pollara, F., Dolinar, S., et al., 2000. Onboard Science Processing and Buffer Management for Intelligent Deep Space Communications. In: Proceedings of IEEE Aerospace Conference Big Sky, Montana, USA, http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/18495/1/99-1983.pdf
    Ozertem, U., Erdogmus, D., Jenssen, R., 2008. Mean Shift Spectral Clustering. Pattern Recognition, 41(6): 1924–1938 doi: 10.1016/j.patcog.2007.09.009
    Peng, N. S., Yang, J., Liu, Z., et al., 2005. Automatic Selection of Kernel-Bandwidth for Mean-Shift Object Tracking. Journal of Software, 16(9): 1542–1550, doi:10.1360/jos16 1542 (in Chinese with English Abstract)
    Song, Y. H., Shan, J., 2006. A Framework for Automated Rock Segmentation of the Mars Exploration Rover Imagery. In: Proceedings of ASPRS 2006 Annual Conference, Reno, Nevada, USA
    Song, Y. H., Shan, J., 2008. Automated Rock Segmentation for Mars Exploration Rover Imagery. In: Lunar and Planetary Science Conference XXXIX, Houston, USA
    Thompson, D. R., Niekum, S., Smith, T., et al., 2005a. Automatic Detection and Classification of Features of Geologic Interest. In: Proceedings of IEEE Aerospace Conference, Montana, USA
    Thompson, D. R., Smith, T., Wettergreen, D., 2005b. Data Mining during Rover Traverse: From Images to Geologic Signatures. In: Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, USA, http://www.ri.cmu.edu/pub_files/pub4/thompon_david_r_2005_3/thompson_david_r_2005_3.pdf
    Thompson, D. R., Castano, R., 2007. Performance Comparison of Rock Detection Algorithms for Autonomous Planetary Geology. Aerospace, IEEE, USA, IEEEAC Paper No. 1251, http://www.davidraythompson.com/publica-tions/2007_IEEEAerospace_Thompson.pdf
    Wagstaff, K. L., Castano, R., Dolinar, S., et al., 2004. Science-Based Region-of-Interest Image Compression. In: Proceedings of 35th Lunar and Planetary Science Conference, League City, Texas, USA, http://www.litech.org/~wkiri/Papers/wagstaff-lpsc04.pdf
    Wen, Z. Q., Cai, Z. X., 2007. Convergence Analysis of Mean Shift Algorithm. Journal of Software, 18(2): 205–212, doi: 10.1360/jos180205 (in Chinese with English Abstract)
    Wu, K. L., Yang, M. S., 2007. Mean Shift-Based Clustering. Pattern Recognition, 40(11): 3035–3052 doi: 10.1016/j.patcog.2007.02.006
    Xu, C. Y., Prince, J. L., 1997. Gradient Vector Flow: A New External Force for Snakes. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 66–71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(623) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return