Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 5
Oct 2013
Turn off MathJax
Article Contents
Vernon F. Cormier, Januka Attanayake. Earth's Solid Inner Core: Seismic Implications of Freezing and Melting. Journal of Earth Science, 2013, 24(5): 683-698. doi: 10.1007/s12583-013-0363-9
Citation: Vernon F. Cormier, Januka Attanayake. Earth's Solid Inner Core: Seismic Implications of Freezing and Melting. Journal of Earth Science, 2013, 24(5): 683-698. doi: 10.1007/s12583-013-0363-9

Earth's Solid Inner Core: Seismic Implications of Freezing and Melting

doi: 10.1007/s12583-013-0363-9
Funds:

the National Science Foundation of USA EAR 07-38492

the National Science Foundation of USA EAR 11-60917

More Information
  • Corresponding author: Vernon F. Cormier, vernon.cormier@uconn.edu
  • Received Date: 10 Nov 2012
  • Accepted Date: 25 Apr 2013
  • Publish Date: 01 Oct 2013
  • Seismic P velocity structure is determined for the upper 500 km of the inner core and lowermost 200 km of the outer core from differential travel times and amplitude ratios. Results confirm the existence of a globally uniform F region of reduced P velocity gradient in the lowermost outer core, consistent with iron enrichment near the boundary of a solidifying inner core. P velocity of the inner core between the longitudes 45°E and 180°E (quasi-Eastern Hemisphere) is greater than or equal to that of an AK135-F reference model whereas that between 180°W and 45°E (quasi-Western Hemisphere) is less than that of the reference model. Observation of this heterogeneity to a depth of 550 km below the inner core and the existence of transitions rather than sharp boundaries between quasi-hemispheres favor either no or very slow inner core super rotation or oscillations with respect to the mantle. Degree-one seismic heterogeneity may be best explained by active inner core freezing beneath the equatorial Indian Ocean dominating structure in the quasi-Eastern Hemisphere and inner core melting beneath equatorial Pacific dominating structure in the quasi-Western Hemisphere. Variations in waveforms also suggest the existence of smaller-scale (1 to 100 km) heterogeneity.

     

  • loading
  • Alboussière, T., Deguen, R., Melzani, M., 2010. Melting-Induced Stratification above the Earth's Inner Core due to Convective Tanslation. Nature, 466(7307): 744–747 doi: 10.1038/nature09257
    Aster, R. C., Borcher, B., Thurber, C. H., 2004. Parameter Estimation and Inverse Problems. Academic Press, Amsterdam. 320
    Aubert, J., Amit, H., Hulot, G., et al., 2008. Thermochemical Flows Couple the Earth's Inner Core Growth to Mantle Heterogeneity. Nature, 454: 758–761 doi: 10.1038/nature07109
    Bergman, I., 1997. Measurements of Elastic Anisotropy due to Solidification Texturing and the Implications for the Earth's Inner Core. Nature, 389: 60–63 doi: 10.1038/37962
    Bullen, K. E., 1942. The Density Variation of the Earths Central Core. Bull. Seismol. Soc. Amer. , 32: 19–29 doi: 10.1785/BSSA0320010019
    Calkins, M. A., Noir, J., Eldredge, J. D., et al., 2012. The Effects of Boundary Topography on Convection in Earth's Core. Geophys. J. Int. , 189: 799–814 doi: 10.1111/j.1365-246X.2012.05415.x
    Calvet, M., Margerin, L., 2008. Constraints on Grain Size and Stable Iron Phases in the Uppermost Inner Core from Multiple Scattering Modeling of Seismic Velocity and Attenuation. Earth Planet. Sci. Lett. , 267: 200–212 doi: 10.1016/j.epsl.2007.11.048
    Cao, A., Masson, Y., Romanowicz, B., 2006. Short Wavelength Topography on the Inner-Core Boundary. Proc. Nat. Acad. Sci. , 104: 31–35
    Cao, A., Romanowicz, B., 2007. Test of the Innermost Inner Core Models Using Broadband PKIKP Travel Time Residuals. Geophys. Res. Lett. , 34(8): L08303, doi: 10.1029/2007GL029384
    Cormier, V. F., 2011. Seismic Viscoleastic Attenuation. In: Gupta, H. K., ed., Encyclopedia of Earth Sciences Series, Encyclopedia of Solid Earth Geophysics. 1279–1290, doi: 10.1007/978-90-481-8702-7
    Cormier, V. F., Attanayake, J., He, K., 2011. Inner Core Freezing and Melting: Constraints from Seismic Body Waves. Phys. Earth Planet. Int. , 188: 163–172 doi: 10.1016/j.pepi.2011.07.007
    Cormier, V. F., Li, X., 2002. Frequency Dependent Attenuation in the Inner Core: Part Ⅱ. A Scattering and Fabric Interpretation. J. Geophys. Res. , 107(B12): ESE 14-1–ESE 4-15, doi: 10.1029/2002JB1796
    Cormier, V. F., Li, X., Choy, G. L., 1998. Seismic Atenuation of the Inner Core: Viscoelastic or Stratigraphic?. Geophys. Res. Lett. , 25(21): 4019–4022 doi: 10.1029/1998GL900074
    Cormier, V. F., Richards, P. G., 1976. Comments on "The Damping of Core Waves" by Anthony Qamar and Alfredo Eisenberg. J. Geophys. Res. , 81: 3066–3068 doi: 10.1029/JB081i017p03066
    Creager, K. C., 1992. Anisotropy of the Inner Core from Differential Travel Times of the Phases PKP and PKIKP. Nature, 356: 309–314 doi: 10.1038/356309a0
    Creager, K. C., 1999. Large-Scale Variations in Inner Core Anisotropy. J. Geophys. Res. , 104(B10): 23127–23139 doi: 10.1029/1999JB900162
    Dai, Z., Wang, W., Wen, L., 2012. Irregular Topography at the Earth's Inner Core Boundary. Proc. Nat. Acad. Sci. , 109(20): 7654–7658, doi: 10.1073/pnas.1116342109
    Deguen, R., Cardin, P., 2011. Thermo-Chemical Convection in the Earth's Inner Core. Geophys. J. Int. , 187(3): 1101–1118 doi: 10.1111/j.1365-246X.2011.05222.x
    Deuss, A., Irving, J. C. E., Woodhouse, J., 2010. Regional Variation of Inner Core Anisotropy from Seismic Normal Mode Observations. Science, 328: 1018–1020 doi: 10.1126/science.1188596
    Doornbos, D. J., 1983. Observable Effects of the Seismic Absorption Band in the Earth. Geophys. J. R. Astr. Soc. , 75: 693–711 doi: 10.1111/j.1365-246X.1983.tb05006.x
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Int. , 25: 297–356 doi: 10.1016/0031-9201(81)90046-7
    Garcia, R., 2002. Constraints on Upper Inner-Core Structure from Waveform Inversion of Core Phases. Geophys. J. Int. , 150: 651–664 doi: 10.1046/j.1365-246X.2002.01717.x
    Garcia, R., Tkalčić, H., Chevrot, S., 2006. A New Global PKP Data Set to Study Earth's Core and Deep Mantle. Phys. Earth. Planet. Inter. , 159(1): 15–31, doi: 10.1016/j.pepi.2006.05.003
    Gubbins, D., Sreenivasan, B., Mound, J., et al., 2011. Melting of the Earth's Inner Core. Nature, 473: 361–363 doi: 10.1038/nature10068
    Irving, J. C. E., Deuss, A., 2011. Hemispherical Structure in Inner Core Velocity Anisotropy. J. Geophys. Res. , 116(B4), doi: 10.1029/2010JB007942
    Ishii, M., Dziewonski, A. M., 2002. The Innermost Inner Core of the Earth: Evidence for a Change in Anisotropic Behavior at the Radius of about 300 km. Proc. Nat. Acad. Sci. , 99: 14025–14030 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=8590078&site=ehost-live
    Kaneshima, S. Hirahara, K., Ohtaki, T., et al., 1994. Seismic Structure near the Inner Core-Outer Core Boundary. Geophys. Res. Lett. , 21(2): 157–160 doi: 10.1029/93GL03289
    Kennett, B. L. N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge University Press, Cambridge. 339 http://gji.oxfordjournals.org/content/75/2/573.full.pdf
    Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Taveltimes. Geophys. J. Int. , 122: 108–124 doi: 10.1111/j.1365-246X.1995.tb03540.x
    Kennett, B. L. N., Gudmundsson, O., 1996. Ellipticity Corrections for Seismic Phases. Geophys. J. Int. , 127: 40–48 doi: 10.1111/j.1365-246X.1996.tb01533.x
    Koper, K. D., Franks, J. M., Dombrovskaya, M., 2004. Evidence for Small-Scale Heterogeneity Earth's Inner Core from a Global Study of PKiKP Coda Waves. Earth Planet. Sci. Lett. , 224: 227–241
    Krasnoshchekov, D. N., Kaazik, P. B., Ovtchinnikov, V. M., 2005. Seismological Evidence for Mosaic Structure of the Surface of the Earth's Inner Core. Nature, 435(7041): 483–487 doi: 10.1038/nature03613
    Lehmann, I., 1936. P'. Publications du Bureau Central Seismologique International, SÈrie A, Travaux Scientifique, 14: 87–115
    Leyton, F., Koper, K. D., 2007. Using PKiKP Coda to Determine Inner Core Structure: 2. Determination of QC. J. Geophys. Res. , 112: B05317, doi: 10.1029/2006JB004370
    Li, X., Cormier, V. F., 2002. Frequency Dependent Attenuation in the Inner Core. Part Ⅰ: A Viscoelastic Interpretation. J. Geophys. Res. , 107(B12): 2362, doi: 10.1029/2002JB001795
    Mattesini, M., Belonoshko, A. B., Ramìrez, E. B. M., et al., 2010. Hemispherical Anisotropic Patterns of the Earth's Inner Core. Proc. Nat. Acad. Sci. , 107(21): 9507–9512 doi: 10.1073/pnas.1004856107
    Monnereau, M., Calvet, M., Margerin, L., et al., 2010. Lopsided Growth of Earth's Inner Core. Science, 328(5981): 1014–1017 doi: 10.1126/science.1186212
    Montagner, J. P., Kennett, B. L. N., 1995. How to Reconcile Body-Wave and Normal-Mode Reference Earth Models?. Geophys. J. Int. , 125: 229–248
    Morelli, A., Dziewonski, A. M., Woodhouse, J., 1986. Anisotropy of the Inner Core Inferred from PKIKP Travel Times. Geophys. Res. Lett. , 13: 1545–1548 doi: 10.1029/GL013i013p01545
    Niu, F., Wen, L., 2001. Hemispherical Variations in Seismic Velocity at the Top of the Earth's Inner Core. Nature, 410: 1081–1084 doi: 10.1038/35074073
    Niu, F., Wen, L., 2002. Seismic Anisotropy in the Top 400 km of the Inner Core beneath the "Eastern" Hemisphere. Geophys. Res. Lett. , 29: 12, doi: 10.1029/2001GL014118
    Niu, F., Wen, L., 2003. Difference in the Seismic Velocity between the Eastern and the Western Hemispheres in the Top of the Earth's Inner Core. Global Tectonics and Metallogeny, 8(1–4): 109–111
    Ohtaki, T., Kaneshima, S., Kanjo, K., 2012. Seismic Structure near the Inner Core Boundary in the South Polar Region. J. Geophys. Res. , 117: B03312, doi: 10.1029/2011JB008717
    Oreshin, S. I., Vinnik, L. P., 2004. Heterogeneity and Anisotropy of Seismic Attenuation in the Inner Core. Geophys. Res. Lett. , 31: L02613, doi: 10.1029/2003GL018591
    Ouzounis, A., Creager, K. C., 2001. Isotropy Overlying Anisotropy at the Top of the Inner Core. Geophys. Res. Lett. , 28(22): 4331–4334, doi: 10.1029/2001GL013341
    Owens, T. J., Crotwell, H. P., Groves, C., et al., 2004. SOD: Standing Order for Data. Seismol. Res. Lett. , 75: 515–520
    Reaman, D. M., Daehn, G. S., Panero, W. R., 2011. Predictive Mechanism for Anisotropy Development in Earth's Inner Core. Earth Planet. Sci. Lett. , 312: 437–442 doi: 10.1016/j.epsl.2011.10.038
    Shearer, P. M., 1994. Constraints on Inner Core Anisotropy from PKP(DF) Tavel Times. J. Geophys. Res. , 99(B10): 19647–19659 doi: 10.1029/94JB01470
    Shearer, P. M., Toy, K. M., 1991. PKP(BC) versus PKP(DF) Differential Travel Times and Aspherical Structure in the Earth's Inner Core. J. Geophys. Res. , 96: 2233–2247 doi: 10.1029/90JB02370
    Song, X. D., Helmberger, D. V., 1992. Velocity Structure near the Inner Core Boundary from Waveform Modeling. J. Geophys. Res. , 97(B5): 6573–6586 doi: 10.1029/92JB00330
    Song, X. D., Helmberger, D. V., 1995. A P Wave Velocity Model of Earth's Core. J. Geophys. Res. , 100(B7): 9817–9830 http://authors.library.caltech.edu/35688/1/94JB03135.pdf
    Song, X. D., Helmberger, D. V., 1998. Seismic Evidence for an Inner Core Tansition Zone. Science, 282: 924–927 doi: 10.1126/science.282.5390.924
    Souriau, A., Poupinet, G., 1991. The Velocity Profile at the Base of the Liquid Core from PKP(BC+Cdiff) Data: An Argument in Favour of Radial Heterogeneity. Geophys. Res. Lett. , 18, doi: 10.1029/91GL02417
    Souriau, A., Romanowicz, B., 1996. Anisotropy in Inner Core Attenuation: A New Type of Data to Constrain the Nature of the Solid Core. Geophys. Res. Lett. , 23: 1–4 doi: 10.1029/95GL03583
    Stroujkova, A., Cormier, V. F., 2004. Regional Variations in the Upppermost 100 km of the Earth's Inner Core. J. Geophys. Res. , 109(B10): B10307, doi: 10.129/2004JB002976
    Sun, X. L., Song, X. D., 2008. Tomographic Inversion for Three-dimensional Anisotropy of Earth's Inner Core. Phys. Earth Planet. Inter. , 167: 53–70 doi: 10.1016/j.pepi.2008.02.011
    Tanaka, S., 2012. Depth Extent of Hemispherical Inner Core from PKP(DF) and PKP(Cdiff) for Equatorial Paths. Phys. Earth Planet. Int. , 210: 50–62 http://seismo.snu.ac.kr/class/summary/2013/TanakaS.PEPI.V210.P50.2012.Summary.pdf
    Tanaka, S., Hamaguchi, H., 1997. Degree One Heterogeneity and Hemispherical Variation of Anisotropy in the Inner Core from PKP(BC)-PKP(DF) Times. J. Geophys. Res. , 102(B2): 2925–2938 doi: 10.1029/96JB03187
    Tkalčić, H., Kennett, B. L. N., Cormier, V. F., 2009. On the Inner-Outer Core Density Cntrast from PKiKP/PcP Amplitude Ratios and Uncertainties Caused by Seismic Noise. Geophys. J. Int. , 179: 425–443, doi: 10.1111/j.1365-246X.2009.04294.x
    Tromp, J., 1993. Support for Anisotropy of the Earth's Inner Core from Free Oscillations. Nature, 366: 678–681 doi: 10.1038/366678a0
    Tseng, T. L., Huang, B. S., 2001. Depth Dependent Attenuation in the Uppermost Inner Core from the Taiwan Short Period Seismic Array PKP Data. Geophys. Res. Lett. , 28(3): 459–462 doi: 10.1029/2000GL012118
    Van Orman, J. A., 2004. On the Viscosity and Creep Mechanism of Earth's Inner Core. Geophys. Res. Lett. , 31: L20606, doi: 10.1029/2004GL021209
    Vidale, J. E., Earle, P., 2000. Fine Scale Heterogeneity in the Earth's Inner Core. Nature, 404: 273–275 doi: 10.1038/35005059
    Waszek, L., Deuss, A., 2011. Distinct Layering in the Hemispherical Seismic Velocity Structure of Earth's Upper Inner Core. J. Geophys. Res. , 116: B12313, doi: 10.1029/2011JB008650
    Woodhouse, J. H., Giardini, D., Li, X., 1986. Evidence for Inner Core Anisotropy from Free Ocillations. Geophys. Res. Lett. , 13: 1549–1552, doi: 10.1029/GL013i013p01549
    Wookey, J., Helffrich, G., 2008. Inner-Core Shear-Wave Anisotropy and Texture from an Observation of PKJKP. Nature, 454: 873–876 doi: 10.1038/nature07131
    Yu, W. C., Wen, L., 2006. Seismic Velocity and Attenuation Structures in the Top 400 km of the Earth's Inner Core along Equatorial Paths. J. Geophys. Res. , 111: B07308, doi: 10.1029/2005JB003995
    Yu, W., Wen, L., Niu, F., 2005. Seismic Velocity Structure in the Earth's Outer Core. J. Geophys. Res. , 110: B02302, doi: 10.1029/2003JB002928
    Zhang, J., Richards, P. G., Schaff, D. P., 2008. Wide-Scale Detection of Earthquake Waveform Doublets and Further Evidence for Inner Core Super-Rotation. Geophys. J. Int. , 174: 993–1006 doi: 10.1111/j.1365-246X.2008.03856.x
    Zou, Z., Koper, K., Cormier, V. F., 2008. The Structure of the Base of the Outer Core Inferred from Seismic Waves Diffracted around the Inner Core. J. Geophys. Res. , 113(B5): B05314, doi: 10.1029/2007JB005316
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(431) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return