Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 5
Oct 2013
Turn off MathJax
Article Contents
Renaud Deguen. Thermal Convection in a Spherical Shell with Melting/Freezing at either or both of Its Boundaries. Journal of Earth Science, 2013, 24(5): 669-682. doi: 10.1007/s12583-013-0364-8
Citation: Renaud Deguen. Thermal Convection in a Spherical Shell with Melting/Freezing at either or both of Its Boundaries. Journal of Earth Science, 2013, 24(5): 669-682. doi: 10.1007/s12583-013-0364-8

Thermal Convection in a Spherical Shell with Melting/Freezing at either or both of Its Boundaries

doi: 10.1007/s12583-013-0364-8
Funds:

the ANR (Agence Nationale de la Recherche) of France ANR-12-PDOC-0015-01

More Information
  • Corresponding author: Renaud Deguen, renaud.deguen@imft.fr
  • Received Date: 02 Jun 2013
  • Accepted Date: 13 Mar 2013
  • Publish Date: 01 Oct 2013
  • In a number of geophysical or planetological settings, including Earth's inner core, a silicate mantle crystallizing from a magma ocean, or an ice shell surrounding a deep water ocean—a situation possibly encountered in a number of Jupiter and Saturn's icy satellites—a convecting crystalline layer is in contact with a layer of its melt. Allowing for melting/freezing at one or both of the boundaries of the solid layer is likely to affect the pattern of convection in the layer. We study here the onset of thermal convection in a viscous spherical shell with dynamically induced melting/freezing at either or both of its boundaries. It is shown that the behavior of each interface—permeable or impermeable—depends on the value of a dimensionless number P (one for each boundary), which is the ratio of a melting/freezing timescale over a viscous relaxation timescale. A small value of P corresponds to permeable boundary conditions, while a large value of P corresponds to impermeable boundary conditions. Linear stability analysis predicts a significant effect of semi-permeable boundaries when the number P characterizing either of the boundary is small enough: allowing for melting/freezing at either of the boundary allows the emergence of larger scale convective modes. The effect is particularly drastic when the outer boundary is permeable, since the degree 1 mode remains the most unstable even in the case of thin spherical shells. In the case of a spherical shell with permeable inner and outer boundaries, the most unstable mode consists in a global translation of the solid shell, with no deformation. In the limit of a full sphere with permeable outer boundary, this corresponds to the "convective translation" mode recently proposed for Earth's inner core. As another example of possible application, we discuss the case of thermal convection in Enceladus' ice shell assuming the presence of a global subsurface ocean, and found that melting/freezing could have an important effect on the pattern of convection in the ice shell.

     

  • loading
  • Abramovich, M., Stegun, I. A., 1965. Handbook of Mathematical Functions. Fourth Printing. Applied Math. Ser. 55, US Government Printing Office, Washington DC
    Alboussière, T., Deguen, R., Melzani, M., 2010. Melting Induced Stratification above the Earth's Inner Core due to Convective Translation. Nature, 466: 744–747 doi: 10.1038/nature09257
    Chandrasekhar, S., 1961. Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Oxford, Clarendon
    Deguen, R., 2012. Structure and Dynamics of Earth's Inner Core. Earth Planet. Sci. Lett. , 333–334: 211–225 http://www.onacademic.com/detail/journal_1000035380621110_2909.html
    Deguen, R., Alboussière, T., Cardin, P., 2013. Thermal Convection in Earth's Inner Core with Phase Change at Its Boundary. Geophys. J. Int. , doi: 10.1093/gji/ggt202
    Grott, M., Sohl, F., Hussmann, H., 2007. Degree-One Convection and the Origin of Enceladus' Dichotomy. Icarus, 191(1): 203–210 doi: 10.1016/j.icarus.2007.05.001
    Irving, J. C. E., Deuss, A., 2011. Hemispherical Structure in Inner Core Velocity Anisotropy. Journal of Geophysical Research, 116(B4): B04307
    Kivelson, M. G., Khurana, K. K., Russell, C. T., et al., 2000. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 289(5483): 1340–1343 doi: 10.1126/science.289.5483.1340
    Labrosse, S., Hernlund, J. W., Coltice, N., 2007. A Crystallizing Dense Magma Ocean at the Base of the Earth's Mantle. Nature, 450(7171): 866–869 doi: 10.1038/nature06355
    McNamara, A. K., Zhong, S., 2005. Degree-One Mantle Convection: Dependence on Internal Heating and Temperature-Dependent Rheology. Geophysical Research Letters, 32(1): L01301
    Mizzon, H., Monnereau, M., 2013. Implication of the Lopsided Growth for the Viscosity of Earth's Inner Core. Earth Planet. Sci. Lett. , 361: 391–401 doi: 10.1016/j.epsl.2012.11.005
    Monnereau, M., Calvet, M., Margerin, L., et al., 2010. Lopsided Growth of Earth's Inner Core. Science, 328: 1014–1017 doi: 10.1126/science.1186212
    Monnereau, M., Dubuffet, F., 2002. Is Io's Mantle Really Mol ten? Icarus, 158(2): 450–459 doi: 10.1006/icar.2002.6868
    Nimmo, F., Pappalardo, R. T., 2006. Diapir-Induced Reorientation of Saturn's Moon Enceladus. Nature, 441(7093): 614–616 doi: 10.1038/nature04821
    Niu, F. L., Wen, L. X., 2001. Hemispherical Variations in Seismic Velocity at the Top of the Earth's Inner Core. Nature, 410: 1081–1084 doi: 10.1038/35074073
    Porco, C. C., Helfenstein, P., Thomas, P. C., et al., 2006. Cassini Observes the Active South Pole of Enceladus. Science, 311(5766): 1393–1401 doi: 10.1126/science.1123013
    Ribe, N. M., 2007. Analytical Approaches to Mantle Dynamics. In: Schubert, G., ed., Treatise on Geophysics, Vol. 7. 167–226
    Schubert, G., Anderson, J. D., Travis, B. J., et al., 2007. Enceladus: Present Internal Structure and Differentiation by Early and Long-Term Radiogenic Heating. Icarus, 188(2): 345–355 doi: 10.1016/j.icarus.2006.12.012
    Solomatov, V. S., 2000. Fluid Dynamics of a Terrestrial Magma Ocean. Origin of the Earth and Moon, 1: 323–338
    Spohn, T., Schubert, G., 2003. Oceans in the Icy Galilean Satellites of Jupiter? Icarus, 161(2): 456–467 doi: 10.1016/S0019-1035(02)00048-9
    Stegman, D. R., Freeman, J., May, D. A., 2009. Origin of Ice Diapirism, True Polar Wander, Subsurface Ocean, and Tiger Stripes of Enceladus Driven by Compositional Convection. Icarus, 202(2): 669–680 doi: 10.1016/j.icarus.2009.03.017
    Tanaka, S., Hamaguchi, H., 1997. Degree One Heterogeneity and Hemispherical Variation of Anisotropy in the Inner Core from PKP(BC)-PKP(DF) Times. Journal of Geophysical Research, 102: 2925–2938 doi: 10.1029/96JB03187
    Tyler, R. H., 2009. Ocean Tides Heat Enceladus. Geophysical Research Letters, 36(15): L15205
    Tyler, R. H., 2008. Strong Ocean Tidal Flow and Heating on Moons of the Outer Planets. Nature, 456(7223): 770–772 doi: 10.1038/nature07571
    Ulvrová, M., Labrosse, S., Coltice, N., et al., 2012. Numerical Modelling of Convection Interacting with a Melting and Solidification Front: Application to the Thermal Evolution of the Basal Magma Ocean. Physics of the Earth and Planetary Interiors, 206(207): 51–66
    Waite, Jr. J. H., Lewis, W. S., Magee, B. A., et al., 2009. Liquid Water on Enceladus from Observations of Ammonia and 40ar in the Plume. Nature, 460(7254): 487–490 doi: 10.1038/nature08153
    Zhong, S., Zuber, M. T., 2001. Degree-1 Mantle Convection and the Crustal Dichotomy on Mars. Earth Planet. Sci. Lett. , 189(1): 75–84
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(746) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return