Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 5
Oct 2013
Turn off MathJax
Article Contents
Xiangfang Zeng, Sidao Ni. Constraining Shear Wave Velocity and Density Contrast at the Inner Core Boundary with PKiKP/P Amplitude Ratio. Journal of Earth Science, 2013, 24(5): 716-724. doi: 10.1007/s12583-013-0371-9
Citation: Xiangfang Zeng, Sidao Ni. Constraining Shear Wave Velocity and Density Contrast at the Inner Core Boundary with PKiKP/P Amplitude Ratio. Journal of Earth Science, 2013, 24(5): 716-724. doi: 10.1007/s12583-013-0371-9

Constraining Shear Wave Velocity and Density Contrast at the Inner Core Boundary with PKiKP/P Amplitude Ratio

doi: 10.1007/s12583-013-0371-9
Funds:

the National Natural Science Foundation of China 41204044

the National Natural Science Foundation of China 40674027

the Fund of Chinese Academy of Sciences KZCX2-EW-121

More Information
  • Corresponding author: Sidao Ni, sdni@whigg.ac.cn
  • Received Date: 03 Dec 2012
  • Accepted Date: 02 Jun 2013
  • Publish Date: 01 Oct 2013
  • Shear velocity and density contrast across the inner core boundary are essential for studying deep earth dynamics, geodynamo and geomagnetic evolution. In previous studies, amplitude ratio of PKiKP/PcP at short distances and PKiKP/P at larger distances are used to constrain the shear velocity and density contrast, and shear velocity in the top inner core is found to be substantially smaller than the PREM prediction. Here we present a large dataset of PKiKP/P amplitude ratio measured on 420 seismic records at ILAR array in Alaska for the distance range of 80°–90°, where the amplitude ratio is sensitive to shear velocity and density contrast. At high frequency (up to 6 Hz), mantle attenuation is found to have substantial effects on PKiKP/P. After the attenuation effects are taken into account, we find that the density contrast is about 0.2–1.0 g/cm3, and shear velocity of inner core is 3.2–4.0 km/s, close to the PREM (Preliminary Reference Earth Model) prediction (0.6 g/cm3 and 3.5 km/s, respectively). The relatively high shear velocity in inner core does not require large quantities of defects or melts as proposed in previous studies.

     

  • loading
  • Antonangeli, D., Occelli, F., Requardt, H., et al., 2004. Elastic Anisotropy in Textured Hcp-Iron to 112 GPa from Sound Wave Propagation Measurements. Earth Planet. Sci. Lett. , 225(1): 243–251 http://james.badro.org/articles/Antonangeli_2004.pdf
    Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core. Earth Planet. Sci. Lett. , 254(1–2): 233–238 http://james.badro.org/articles/Badro_2007.pdf
    Belonoshko, A. B., Skorodumova, N. V., Davis, S., et al., 2007. Origin of the Low Rigidity of the Earth's Inner Core. Science, 316(5831): 1603–1605 doi: 10.1126/science.1141374
    Birch, F., 1961. Composition of the Earth Mantle. Geophys. J. R. Astron. Soc. , 4(S1): 295–311 http://gji.oxfordjournals.org/content/4/Supplement_1/295.full.pdf
    Bolt, B., Qamar, A., 1970. Upper Bound to the Density Jump at the Boundary of the Earth's Inner Core. Nature, 228: 148–150 doi: 10.1038/228148a0
    Calvet, M., Margerin, L., 2008. Constraints on the Grain Size and Stable Iron Phases in the Upper Most Inner Core from Multiple Scattering Modeling of Seismic Velocity and Attenuation. Earth Planet. Sci. Lett. , 267: 200–212 doi: 10.1016/j.epsl.2007.11.048
    Cao, A., Masson, Y., Romanowicz, B., 2007. Short Wavelength Topography on the Inner-Core Boundary. Proc. Natl. Acad. Sci. USA, 104(1): 31–35 doi: 10.1073/pnas.0609810104
    Cao, A., Romanowicz, B., 2004. Constraints on Density and Shear Velocity Contrasts at the Inner Core Boundary. Geophys. J. Int. , 157(3): 1146–1151 doi: 10.1111/j.1365-246X.2004.02330.x
    Cao, A., Romanowicz, B., Takeuchi, N., 2005. An Observation of PKJKP: Inferences on Inner Core Shear Properties. Science, 308(5727): 1453–1455 doi: 10.1126/science.1109134
    Choy, G. L., Cormier, V. F., 1983. The Structure of the Inner Core Inferred from Short-Period and Broadband GDSN Data. Geophys. J. R. Astr. Soc. , 72(1): 1–21 doi: 10.1111/j.1365-246X.1983.tb02801.x
    Cormier, V. F., Richards, P. G., 1976. Comments on' The Damping of Core Waves' by Anthony Qamar and Alfredo Eisenberg. J. Geophys. Res. , 81(17): 3066–3068 doi: 10.1029/JB081i017p03066
    Cummins, P., Johnson, L. R., 1988. Short-Period Body Wave Constraints of Properties of the Earth's Inner Core Boundary. J. Geophys. Res. , 3: 9058–9074 http://adsabs.harvard.edu/abs/1988jgr....93.9058c
    Deguen, R., Alboussière, T., Brito, D., 2007. On the Existence and Structure of a Mush at the Inner Core Boundary of the Earth. Phys. Earth Planet. Inter. , 164(1): 36–49 http://www.onacademic.com/detail/journal_1000035430352610_7ec9.html
    Derr, J. S., 1969. Internal Structure of the Earth Inferred from Free Oscillations. J. Geophys. Res. , 74: 5202–5220 doi: 10.1029/JB074i022p05202
    Deuss, A., 2008. Normal Mode Constraints on Shear and Compressional Wave Velocity of the Earth's Inner Core. Earth Planet. Sci. Lett. , 268(3–4): 364–375 http://adsabs.harvard.edu/abs/2008AGUFMDI53B..06W
    Durand, S., Matas, J., Ford, S., et al., 2013. Insights from ScS-S Measurements on Deep Mantle Attenuation. Earth Planet. Sci. Lett. , doi: 10.1016/j.epsl.2013.05.026
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. , 25(4): 297–356 doi: 10.1016/0031-9201(81)90046-7
    Dziewonski, A., Gilbert, F., 1971. Solidity of the Inner Core of the Earth Inferred from Normal Mode Observations. Nature, 234: 465–466 doi: 10.1038/234465a0
    Earle, P. S., Shearer, P. M., 1997. Observations of PKKP Precursors Used to Estimate Small-Scale Topography on the Core-Mantle Boundary. Science, 277: 667–670 doi: 10.1126/science.277.5326.667
    Hage, H., 1983. Velocity Constraints for the Inner Core Inferred from Long Period PKP Amplitude. Phys. Earth Planet. Inter. , 31: 171–185 doi: 10.1016/0031-9201(83)90108-5
    Jackson, I., Gerald, J. D. F., Kokkonen, H., 2000. High-Temperature Viscoelastic Relaxation in Iron and Its Implications for the Shear Modulus and Attenuation of the Earth's Inner Core. J. Geophys. Res. , 105(B10): 23605–23634 doi: 10.1029/2000JB900131
    Jiang, G., Zhao, D., 2012. Observation of High-Frequency PKiKP in Japan: Insight into Fine Structure of Inner Core Boundary. Journal of Asian Earth Sciences, 59: 167–184 doi: 10.1016/j.jseaes.2012.07.017
    Kantor, A. P., Kantor, I. Y., Kurnosov, A. V., et al., 2007. Sound Wave Velocities of Fcc Fe-Ni Alloy at High Pressure and Temperature by Mean of Inelastic X-Ray Scattering. Phys. Earth Planet. Inter. , 164(1–2): 83–89 http://www.sciencedirect.com/science/article/pii/S0031920107001392
    Kawakatsu, H., 2006. Sharp and Seismically Transparent Inner Core Boundary Region Revealed by an Entire Network Observation of Near-Vertical PKiKP. Earth Planets Space, 58: 855–863 doi: 10.1186/BF03351990
    Koper, K., Dombrovskaya, M., 2005. Seismic Properties of the Inner Core Boundary from PKiKP/P Amplitude Ratios. Earth Planet. Sci. Lett. , 237(3–4): 680–694 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.549.3641&rep=rep1&type=pdf
    Koper, K., Pyle, M., 2004. Observations of PKiKP/PcP Amplitude Ratios and Implications for Earth Structure at the Boundaries of the Liquid Core. J. Geophys. Res. , 109: B03301 http://www.eas.slu.edu/People/KKoper/Publications/KP04.pdf
    Krasnoshchekov, D. N., Kaazik, P. B., Ovtchinnikov, V. M., 2005. Seismological Evidence for Mosaic Structure of the Surface of the Earth's Inner Core. Nature, 435(7041): 483–487 doi: 10.1038/nature03613
    Labrosse, S., Poirier, J., Mouël, J., 2001. The Age of the Inner Core. Earth Planet. Sci. Lett. , 190(3): 111–123 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.4301&rep=rep1&type=pdf
    Lehmann, I., 1936. P'. Publications du Bureau Central Seismologique International, Série A Travaux Scientifiques, 14: 87–115 (in German)
    Lin, J. F., Sturhahn, W., Zhao, J., et al., 2005. Sound Velocities of Hot Dense Iron: Birch's Law Revisited. Science, 308(5730): 1892–1894 doi: 10.1126/science.1111724
    Mao, H. K., Shu, J., Shen, G., et al., 1998. Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth's Inner Core. Nature, 396(6713): 741–743 doi: 10.1038/25506
    Masters, G., Gubbins, D., 2003. On the Resolution of Density within the Earth. Phys. Earth Planet. Inter. , 140: 159–167 doi: 10.1016/j.pepi.2003.07.008
    McNamara, D. E., Buland, R. P., 2004. Ambient Noise Levels in the Continental United States. Bull. Seis. Soc. Am. , 94(4): 1517–1527 doi: 10.1785/012003001
    Montagner, J. P., Kennett, B. L. N., 1996. How to Reconcile Body-Wave and Normal-Mode Reference Earth Models. Geophys. J. Int. , 125(1): 229–248 doi: 10.1111/j.1365-246X.1996.tb06548.x
    Nimmo, F., 2007. Thermal and Compositional Evolution of the Core. Treatise on Geophysics, 9: 217–241 doi: 10.1016/B978-044452748-6/00147-4
    Poupinet, G., Kennett, B. L. N., 2004. On the Observation of High Frequency PKiKP and Its Coda in Australia. Phys. Earth Planet. Inter. , 146(3–4): 497–511 http://wwwrses.anu.edu.au/~brian/PDF-reprints/2004/pepi.146.497.pdf
    Rosat, S., Rogister, Y., Crossley, D., et al., 2006. A Search for the Slichter Triplet with Superconducting Gravimeters: Impact of the Density Jump at the Inner Core Boundary. Journal of Geodynamics, 41(1–3): 296–306 http://www.onacademic.com/detail/journal_1000035411473210_b79e.html
    Rost, S., Revenaugh, J., 2004. Small-Scale Changes of Core-Mantle Boundary Reflectivity Studied Using Core Reflected PcP. Phys. Earth Planet. Inter. , 145(1–4): 19–36
    Shearer, P., Masters, G., 1990. The Density and Shear Velocity Contrast at the Inner Core Boundary. Geophys. J. Int. , 102: 491–498 doi: 10.1111/j.1365-246X.1990.tb04481.x
    Song, X., Helmberger, D., 1992. Velocity Structure near the Inner Core Boundary from Waveform Modeling. J. Geophys. Res. , 97: 6573–6586 doi: 10.1029/92JB00330
    Song, X., Helmberger, D., 1995. A P Wave Velocity Model of Earth's Core. J. Geophys. Res. , 100(B6): 9817–9830 doi: 10.1029/94JB03135
    Souriau, A., Souriau, M., 1989. Ellipticity and Density at the Inner Core Boundary from Subcritical PKiKP and PcP Data. Geophys. J. Int. , 98: 39–54 doi: 10.1111/j.1365-246X.1989.tb05512.x
    Tkalčić, H., Cormier, V. F., Kennett, B. L. N., et al., 2010. Steep Reflections from the Earth's Core Reveal Small-Scale Heterogeneity in the Upper Mantle. Phys. Earth Planet. Inter. , 178(1–2): 80–91
    Tkalčić, H., Kennett, B. L. N., Cormier, V. F., 2009. On the Inner-Outer Core Density Contrast from PKiKP/PcP Amplitude Ratios and Uncertainties Caused by Seismic Noise. Geophys. J. Int. , 179(1): 425–443 doi: 10.1111/j.1365-246X.2009.04294.x
    Vidale, J., Earle, P., 2000. Fine-Scale Heterogeneity in the Earth's Inner Core. Nature, 404: 273–275 doi: 10.1038/35005059
    Vocadlo, L., Dobson, D. P., Wood, I. G., 2009. Ab Initio Calculations of the Elasticity of Hcp-Fe as a Function of Temperature at Inner-Core Pressure. Earth Planet. Sci. Lett. , 288(3–4): 534–538
    Wen, L., Helmberger, D., 1998. Ultra-Low Velocity Zones near the Core-Mantle Boundary from Broadband PKP Precursor. Science, 279: 1701–1703 doi: 10.1126/science.279.5357.1701
    Yu, W., Wen, L., Niu, F., 2005. Seismic Velocity Structure in the Earth's Outer Core. J. Geophys. Res. , 110: B02302, doi: 10.1029/2003JB002928
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(555) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return