Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 1
Feb 2014
Turn off MathJax
Article Contents
Songlin Gong, Nengsong Chen, Hongyan Geng, Min Sun, Lu Zhang, Qinyan Wang. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 2014, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2
Citation: Songlin Gong, Nengsong Chen, Hongyan Geng, Min Sun, Lu Zhang, Qinyan Wang. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 2014, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2

Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications

doi: 10.1007/s12583-014-0401-2
More Information
  • Corresponding author: Songlin Gong, gsanly@163.com
  • Received Date: 27 Jan 2013
  • Accepted Date: 28 May 2013
  • Publish Date: 01 Feb 2014
  • The metamorphosed Early Paleoproterozoic granitoids in the Quanji massif, Northwestern China provide constraints for relationship between the Tarim Craton and North China Craton. Among granitoids batholiths, rocks of the Mohe quartz-diorite show typically adakitic geochemical characteristics, with medium K2O/Na2O ratios (0.56–1.17) and high Sr (519–619 ppm) low Y (9.37–20.40 ppm) and Yb (0.97–1.77 ppm) concentrations. The rocks have ɛNd(t) values between +2.4 and +4.4 and depleted mantle Nd model ages of 2.43–2.59 Ga. The magmatic zircons have positive ɛHf(t) values ranging from +0.40 to +7.60 and depleted mantle Hf model ages of 2.43–2.70 Ga, with major peaks at ~2.54 and ~2.65 Ga. The geochemical and Nd-Hf isotopic characteristics indicate that the Mohe quartz-dioritic rocks might be formed by partial melting of high-pressure metamorphosed juvenile crustal rocks in post-orogenic extensional regime in the Early Paleoproterozoic. It suggests that important crustal growth occurred in the Quanji massif and the Tarim Craton at ~2.4 and 2.5–2.7 Ga. The Quanji massif and Tarim Craton might share a similar crustal evolution history with the North China Craton in the Neoarchean.

     

  • loading
  • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362: 144–146 doi: 10.1038/362144a0
    Ba, J., Gong, S. L., Liao, F. X., et al., 2012. Re-Determining the Intrusion Age for the Protolith of the Mohe Gneiss in the Quanji Massif. Geological Science and Technology Information, 31(6): 98–101 (in Chinese with English Abstract)
    Blichert-Toft, J., Chauvel, C., Albarede, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260 doi: 10.1007/s004100050278
    Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268 doi: 10.1007/s11434-006-0257-7
    Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499 doi: 10.1046/j.1440-0952.2001.00882.x
    Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3): 367–376
    Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007. Geochemistry and Nd-Sr-Pb Isotopic Compositions Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science-Journal of China University of Geosciences, 32(1): 7–21 (in Chinese with English Abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=3000306043
    Chen, N. S., Zhang, L., Sun, M., et al., 2012. U-Pb and Hf Isotopic Compositions of Detrial Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 54–55: 110–130 http://www.sciencedirect.com/science/article/pii/S1367912012001563
    Chen, N. S., Gong, S. L., Xia, X. P., et al., 2013a. Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7 Ga Crustal Growth. Journal of Earth Sciences, 24(1): 29–41
    Chen, N. S., Liao, F. X., Wang, L., et al., 2013b. Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 228: 102–116 doi: 10.1016/j.precamres.2013.01.013
    Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021–1024 doi: 10.1130/G19796.1
    Coleman, R. G., Peterman, Z. E., 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80(8): 1099–1108 doi: 10.1029/JB080i008p01099
    Davis, G. A., 2003. The Yanshan Belt of North China: Tectonics, Adakitic Magmatism, and Crustal Evolution. Earth Science Frontiers, 10(4): 373–384 http://sess.pku.edu.cn/esf/1994-2005pdf/200304/030406.pdf
    De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1 R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1–4): 183–210 http://www.scienceopen.com/document?vid=f4b05dfa-01f6-42d5-bf1a-f397e2166947
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665 doi: 10.1038/347662a0
    Defant, M. J., Xu, J. F., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129–142
    Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at 2.5 Ga: Evidence from In Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149–170 doi: 10.1016/j.gr.2011.01.011
    Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1): 205–215 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.910.6569&rep=rep1&type=pdf
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048 doi: 10.1093/petrology/42.11.2033
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897 doi: 10.1038/nature03162
    Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraint from Zircon Hf Isotopes. Gondwana Research, 21(2–3): 517–529 http://www.onacademic.com/detail/journal_1000035051556610_41c6.html
    Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152–166 doi: 10.1016/j.gr.2011.07.011
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147 doi: 10.1016/S0016-7037(99)00343-9
    Guo, F., Fan, W. M., Li, C. W., 2006. Geochemistry of Late Mesozoic Adakites from the Sulu Belt, Eastern China: Magma Genesis and Implications for Crustal Recycling Beneath Continental Collisional Orogens. Geological Magazine, 143(1): 1–13 doi: 10.1017/S0016756805001214
    Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1): 205–224
    He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815–3838 doi: 10.1016/j.gca.2011.04.011
    Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated During Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1): 139–155
    Hu, N. G., Wang, X. X., Sun, Y. G., et al., 2007. The Geochemistry Features, Origin of the Yingfeng Rapakivi Granite and Its Associated Rocks in North Qaidam Basin and the Geological Significance. Geological Review, 53(4): 731–745 (in Chinese with English Abstract)
    Huang, F., He, Y. S., 2010. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-type Adakites. Chinese Science Bulletin, 55(22): 2428–2439 doi: 10.1007/s11434-010-3224-2
    Huang, W., Zhang, L., Ba, J., et al., 2011. Detrital Zircon U-Pb Dating for K-Feldspar Leptynite Constrains the Age of Dakendaban Group. Geogoical Bulletin of China, 30(9): 1353–1359 (in Chinese with English Abstract)
    Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analysis of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 59(11): 2239–2258 doi: 10.1016/0016-7037(95)00103-7
    Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591–2608 doi: 10.1016/j.gca.2007.02.018
    Jiang, N., Guo, J. H., Zhai, M. G., et al., 2010. 2.7 Ga Crust Growth in the North China Craton. Precambrian Research, 179(1): 37–49 http://or.nsfc.gov.cn/bitstream/00001903-5/50015/1/1000001789637.pdf
    Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303–311 http://www.researchgate.net/profile/Suzanne_Kay/publication/257822410_Andean_adakites_three_ways_to_make_then_(vol_18p3032002)/links/00463528cc04fb65ed000000
    Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1): 149–159 http://online.sfsu.edu/~leech/papers/Leech2001.pdf
    Li, X. Y., Chen, N. S., Xia, X. P., et al., 2007. Constraints on Timing of the Early Paleoproterozoic Magmatism and Crustal Evolution of the Oulongbuluke Microcontinent: U-Pb and Lu-Hf Isotope Systems of Zircons from Mohe Granitic Pluton. Acta Petrologica Sinica, 23(2): 513–522 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702028.htm
    Liu, C. H., Zhao, G. C., Sun, M., et al., 2011a. U-Pb and Hf Isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications. Gondwana Research, 20(1): 106–121 doi: 10.1016/j.gr.2010.11.016
    Liu, C. H., Zhao, G. C., Sun, M., et al., 2011b. U-Pb and Hf Isotopic Study of Detrital Zircons from the Yejishan Group of the Lüliang Complex: Constraints on the Timing of Collision between the Eastern and Western Blocks, North China Craton. Sedimentary Geology, 236(1): 129–140 http://smartsearch.nstl.gov.cn/paper_detail.html?id=42af27b5831d02c44f62a8a3771d6733
    Liu, F., Guo, J. H., Lu, X. P., et al., 2009. Crustal Growth at ~2.5 Ga in the North China Craton: Evidence from Whole-Rock Nd and Zircon Hf Isotopes in the Huai'an Gneiss Terrane. Chinese Science Bulletin, 54(24): 4704–4713
    Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3): 272–284 http://www.onacademic.com/detail/journal_1000035432920910_0e71.html
    Lu, S. N., 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Geological Publishing House, Beijing. 1–125 (in Chinese)
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1): 94–107 http://www.onacademic.com/detail/journal_1000035432423410_f7c8.html
    Lu, S. N., Yu, H. F., Li, H. K., et al., 2006. Precambrian Key Geological Events in Northwestern China and Global Tectonic Implications: Studies on Key Issues of Precambrian Geology in China. Geological Publishing House, Beijing. 1–206 (in Chinese)
    Ma, C. Q., Yang, K. G., Ming, H. L., et al., 2004. The Timing of Tectonic Transition from Compression to Extension in Dabieshan: Evidence from Mesozoic Granites. Science in China Series D: Earth Sciences, 47(5): 453–462 http://www.researchgate.net/profile/Changqian_Ma2/publication/267711821_The_timing_of_tectonic_transition_from_compression_to_extension_in_Dabieshan_Evidence_from_Mesozoic_granites/links/56c4893208aeeeffa9e5baf0.pdf
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Tronhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1): 1–24 http://www.sciencedirect.com/science/article/pii/S002449370400266X
    Patchett, P. J., Tatsumoto, M., 1980. A Routine High-Precision Method for Lu-Hf Isotope, Geochemistry and Chronology. Contributions to Mineralogy and Petrology, 75(3): 263–267 doi: 10.1007/BF01166766
    Pearce, J. A., 1996. Sources and Settings of Granitic Rock. Episodes, 19(4): 120–125 doi: 10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983 doi: 10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81 doi: 10.1007/BF00384745
    Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003–2032 doi: 10.1093/petrology/egg068
    Peng, P., Guo, J. H., Windley, B. F., et al., 2011. Halaqin Volcano-Sedimentary Succession in the Central-Northern Margin of the North China Craton: Products of Late Paleoproterozoic Ridge Subduction. Precambrian Research, 187(1): 165–180 http://cpfd.cnki.com.cn/article/cpfdtotal-dzdq201201001070.htm
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1): 29–46 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801002013.htm
    Peng, P., Zhai, M. G., Ernst, R. E., et al., 2008. A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos, 101(3): 260–280
    Pirajno, F., Ernst, R. E., Borisenko, A. S., et al., 2009. Intraplate Magmatism in Central Asia and China and Associated Metallogeny. Ore Geology Reviews, 35(2): 114–136 doi: 10.1016/j.oregeorev.2008.10.003
    Pitcher, W. S., 1983. Granite: Typology, Geological Environment and Melting Relationships. In: Atherton, M. P., Gribble, C. D., eds., Migmatites, Melting and Metamorphism. Shiva Publishing Ltd., Cheshire. 277–285
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar, Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931 doi: 10.1093/petrology/36.4.891
    Rapp, R. P., Xiao, L., Shmizu, N., 2002. Experimental Constraints on the Origin of Potassium-Rich Adakites in Eastern China. Acta Petrologica Sinica, 18(3): 293–302 http://www.oalib.com/paper/1473156
    Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578 doi: 10.1038/378571a0
    Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(683): 683–687 http://www.researchgate.net/publication/290163303_Erratum_Calibration_of_the_lutetium-hafnium_clock_Science_683
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematic of Ocean Basalts: Implications for Mantle Composition and Process. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, 42(1): 313–345
    Vervoort, J. D., Patchett, P. J., 1996. Behaviour of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733 doi: 10.1016/0016-7037(96)00201-3
    Vervoort, J. D., Patchett, P. J., Soderlund, U., et al., 2004. Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotopic Dilution Using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 5(11): 2004GC000721 http://www.ncbi.nlm.nih.gov/pubmed/21065053
    Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2011a. Juvenile Magmatism and Crustal Recycling at the End of Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 310(10): 1503–1552
    Wan, Y. S., Liu, D. Y., Wang, W., et al., 2011b. Provenance of Meso-to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton: An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 20(1): 219–242 doi: 10.1016/j.gr.2011.02.009
    Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465–468 doi: 10.1130/G21522.1
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006a. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3): 424–446 http://www.sciencedirect.com/science/article/pii/S0024493706000302
    Wang, Q., Xu, J. F., Jian, P., et al., 2006b. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144 doi: 10.1093/petrology/egi070
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007a. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636 doi: 10.1016/j.gca.2007.03.008
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007b. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 115(2): 149–161 doi: 10.1086/510643
    Wang, Q., Xu, J. F., Zhao, Z. H., et al., 2004. Cretaceous High-Potassium Intrusive Rocks in the Yueshan-Hongzhen Area of East China: Adakites in an Extensional Tectonic Regime within a Continent. Geochemical Journal, 38(5): 417–434 doi: 10.2343/geochemj.38.417
    Wang, Q. Y., Chen, N. S., Li, X. Y., et al., 2008. LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chinese Science Bulletin, 53(18): 2849–2858 http://www.cqvip.com/main/none.aspx?lngid=28382744
    Wang, Q. Y., Pan, Y. M., Chen, N. S., et al., 2009. Proterozoic Polymetamorphism in the Quanji Block, Northwestern China: Evidence from Microtextures, Garnet Compositions and Monazite CHIME Ages. Journal of Asian Earth Sciences, 34(5): 686–698 doi: 10.1016/j.jseaes.2008.10.008
    White, A. J. R., 1979. Sources of Granite Magma. Abstracts of Papers to be Presented at the Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, November 5–8, 1979, 11: 539
    Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3): 581–593 http://www.sciencedirect.com/science/article/pii/S0012821X05007995
    Xiao, L., Clemens, J. D., 2007. Origin of Potassic (C-Type) Adakite Magmas: Experimental and Field Constraints. Lithos, 95(3): 399–414 http://www.onacademic.com/detail/journal_1000035064585910_3e66.html
    Xiao, L., Zhang, H. F., Clemens, J. D., et al., 2007. Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau: Geochronology, Petrogenesis and Implications for Tectonic Evolution. Lithos, 96(3): 436–452
    Xiao, L., Rapp, R. P., Xu, J. F., 2004. The Role of Deep Processes Controls on Variation of Compositions of Adakitic Rocks. Acta Petrologica Sinica, 20(20): 219–228 (in Chinese with English Abstract) http://www.researchgate.net/publication/279627712_The_role_of_deep_process_controls_on_variation_of_compositions_of_adakitic_rocks
    Xiong, X. L., Li, X. H., Xu, J. F., et al., 2003. Extremely High-Na Adakite-Like Magmas Derived from Alkali-Rich Basaltic Underplate: The Late Cretaceous Zhantang Andesites in the Huichang Basin, SE China. Geochemical Journal, 37(2): 233–252 doi: 10.2343/geochemj.37.233
    Xiong, X. L., Liu, X. C., Zhu, Z. M., et al., 2011. Adakitic Rocks and Destruction of the North China Craton: Evidence from Experimental Petrology and Geochemistry. Science China Series D: Earth Sciences, 54(6): 858–870 doi: 10.1007/s11430-010-4167-9
    Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3): 238–259 http://www.sciencedirect.com/science/article/pii/S0009254107001039
    Xu, H. J., Ma, C. Q., Zhang, J. F., 2012a. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 142: 182–200 http://or.nsfc.gov.cn/bitstream/00001903-5/52401/1/1000003698195.pdf
    Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2012b. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Overthickened Lower Continental Crust. Gondwana Research, 23(1): 190–207, doi: 10.1016/j.gr.2011.12.009
    Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111–1114 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
    Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454–464 doi: 10.1016/j.jseaes.2005.03.010
    Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2): 160–173 http://www.sciencedirect.com/science/article/pii/S1367912006000459
    Yin, C. Q., Zhao, G. C., Guo, J. H., et al., 2011. U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1): 25–38 http://www.sciencedirect.com/science/article/pii/S0024493710003233
    Yogodzinski, G. M., Kelemen, P. B., 1998. Slab Melting in the Aleutians: Implication of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt. Earth and Planetary Science Letters, 158(1): 53–65 http://science.whoi.edu/labs/mclean210/kelemen/pages/Yogodzinski%20%26%20Kelemen%20EPSL.pdf
    Zhang, C., Ma, C. Q., Holtz, F., 2010. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China): Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 119(3): 467–484 http://www.sciencedirect.com/science/article/pii/S0024493710002033
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2006. Neoproterozoic Bimodal Intrusive Complex in the Southwestern Tarim Block, Northwest China: Age, Geochemistry and Implications for the Rifting of Rodinia. International Geology Review, 48(2): 112–128 doi: 10.2747/0020-6814.48.2.112
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2007. An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China: Age, Geochemistry, and Tectonic Implications. Gondwana Research, 12(1): 101–112 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1342937X06002504&originContentFamily=serial&_origin=article&_ts=1478724769&md5=d0ef70e7727548743b30d848c24f1bbe
    Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3): 281–299 http://www.sciencedirect.com/science/article/pii/S0009254102000062
    Zhang, J. X., Wan, Y. S., Xu, Z. Q., et al., 2001. Discovery of Basic Granulite and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 17(3): 453–458 (in Chinese with English Abstract)
    Zhang, L., Liao, F. X., Ba, J., et al., 2011. Mineral Evolution and Zircon Geochronogy of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 18(2): 79–84 (in Chinese with English Abstract)
    Zhang, Q., Wang, Y., Wang, Y. L., et al., 2001. Preliminary Study on the Components of the Lower Crust in East China Plateau during Yanshanian Period: Constraints on Sr and Nd Isotopic Compositions of Adakite-Like Rocks. Acta Petrologica Sinica, 17(4): 505–513 (in Chinese with English Abstract) http://www.oalib.com/paper/1471911
    Zhang, Q., Xu, J. F., Wang, Y., et al., 2004. On the Diversity of Adakite. Geological Bulletin of China, 23(9–10): 959–965 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(766) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return