Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 1
Feb 2014
Turn off MathJax
Article Contents
Ismail Hossain, Toshiaki Tsunogae. Crystallization Conditions and Petrogenesis of the Paleoproterozoic Basement Rocks in Bangladesh: An Evaluation of Biotite and Coexisting Amphibole Mineral Chemistry. Journal of Earth Science, 2014, 25(1): 87-97. doi: 10.1007/s12583-014-0402-1
Citation: Ismail Hossain, Toshiaki Tsunogae. Crystallization Conditions and Petrogenesis of the Paleoproterozoic Basement Rocks in Bangladesh: An Evaluation of Biotite and Coexisting Amphibole Mineral Chemistry. Journal of Earth Science, 2014, 25(1): 87-97. doi: 10.1007/s12583-014-0402-1

Crystallization Conditions and Petrogenesis of the Paleoproterozoic Basement Rocks in Bangladesh: An Evaluation of Biotite and Coexisting Amphibole Mineral Chemistry

doi: 10.1007/s12583-014-0402-1
More Information
  • Corresponding author: Ismail Hossain, ismail_gm@ru.ac.bd
  • Received Date: 07 Dec 2012
  • Accepted Date: 12 Mar 2013
  • Publish Date: 01 Feb 2014
  • The Paleoproterozoic (~1.73 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations including diorite, quartz diorite, monzodiorite, quartz monzonite and granite. These are composed of varying proportions of quartz+plagioclase+K-feldspar+biotite+ hornblende±epidote+titanite+magnetite+apatite and zircon. Amphibole and biotite, dominant ferromagnesian minerals, have been analyzed with an electron microprobe. The biotite, Mg-dominant trioctahedral micas, is classified as phlogopitic nature. Relatively high Mg (1.33–1.53 pfu), Mg# (0.52–0.59) and low Al (0.13–0.25 pfu) contents in the biotite reflect slightly fractionated magma, which might be a relative indicator for the origin of the parental magma. Biotite is also a very good sensor of oxidation state of the parental magma. Oxygen fugacity of the studied biotites estimate within the QFM and HM buffers and equilibrate at about −12.35 and −12.46, which exhibit the source materials were relatively higher oxidation state during crystallization and related to arc magmatism. Whereas, calcic amphiboles, a parental member of arc-related igneous suite, display consistent oxygen fugacity values (−11.7 to −12.3), low Al# (0.16–0.21) with H2Omelt (5.6 wt.%–9.5 wt.%) suggest their reliability with the typical values of calc-alkaline magma crystallization. The oxygen fugacity of magma is related to its source material, which in turn depends on tectonic setting. Discrimination diagrams and chemical indices of both biotite and amphibole of dioritic rocks reveal calc-alkaline orogenic complexes; mostly Ⅰ-type suite formed within subduction-related environments. Moreover, igneous micas are used as metallogenic indicator. The biotites with coexisting amphibole compositions show an apparent calc-alkaline trend of differentiation. The study suggests that the trend of oxidized magmas is commonly associated with compressive tectonic and convergent plate boundaries.

     

  • loading
  • Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541 doi: 10.1093/petrology/35.2.525
    Allen, J. C., Boettcher, A. L., 1978. Amphiboles in Andesite and Basalt: Ⅱ. Stability as a Function of P-T-fH2O-fO2. American Mineralogists, 63(11–12): l074–1087 http://ammin.geoscienceworld.org/content/63/11-12/1074
    Aydin, F., Karsli, O., Sadiklar, M. B., 2003. Mineralogy and Chemistry of Biotites from Eastern Pontide Granitoid Rocks, NE-Turkey: Some Petrological Implications for Granitoid Magmas. Chem. Erde, 63(2): 163–182 doi: 10.1078/0009-2819-00027
    Beane, R. E., 1974. Biotite Stability in the Porphyry Copper Environment. Economic Geology, 69(2): 241–256 doi: 10.2113/gsecongeo.69.2.241
    Behrens, H., Gaillard, F., 2006. Geochemical Aspects of Melts: Volatiles and Redox Behaviour. Elements, 2(5): 275–280 doi: 10.2113/gselements.2.5.275
    Burkhard, D. J. M., 1993. Biotite Crystallization Temperatures and Redox States in Granitic Rocks as Indicator for Tectonic Setting. Geol. en Mijnb. , 71(4): 337–349 http://www.researchgate.net/publication/316933265_Biotite_crystallization_temperatures_and_redox_states_in_granitic_rocks_as_indicator_for_tectonic_setting
    Czamanske, G. K., Dillet, B., 1988. Alkali Amphibole, Tetrasilicic Mica and Sodic Pyroxene in Peralkaline Siliceous Rocks, Questa Caldera, New Mexico. American Journal of Science, 288-A: 358–392
    Desikachar, S. V., 1974. A Review of the Tectonic and Geological History of Eastern India in Terms of Plate Tectonics Theory. Journal of Geological Society, India, 15: 137–149 http://www.researchgate.net/publication/284297714_A_review_of_the_tectonic_and_geological_history_of_eastern_India_in_terms_of_plate_tectonic_theory
    Dodge, F. C. W., Moore, J. G., 1968. Occurrence and Composition of Biotites from the Cartridge Pass Pluton of the Sierra Nevada Batholith, California. Geol. Surv. Res. 1968. Prof. Pap. USGS, 600-B: B6–B10
    Dwivedi, A. K., Pandey, U. K., Murugan, C., et al., 2011. Geochemistry and Geochronology of A-Type Barabazar Granite: Implications on the Geodynamics of South Purulia Shear Zone, Singhbhum Craton, Eastern India. Journal of Geological Society, India, 77(6): 527–538 doi: 10.1007/s12594-011-0055-y
    Dymek, R. F., 1983. Titanium, Aluminium and Interlayer Cation Substitutions in Biotite from High Grade Gneisses, West Greenland. American Mineralogists, 68: 880–899 http://rruff.info/doclib/am/vol68/AM68_880.pdf
    Ewart, A., 1979. A Review of the Mineralogy and Chemistry of Tertiary-Recent Dacitic, Latitic, Rhyolitic and Related Salic Volcanic Rocks. In: Fred, B., ed., Trondhjemites, Dacites, and Related Rocks. Springer-Verlag, Berlin. 12–101
    Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. U.S.G.S. Prof. Paper, 354B: 1–49
    Haslam, H. W., 1968. The Crystallization of Intermediate and Acid Magmas at Ben Nevis, Scotland. Journal of Petrology, 9(1): 84–104 doi: 10.1093/petrology/9.1.84
    Hecht, L., 1994. The Chemical Composition of Biotite as an Indicator of Magmatic Fractionation and Metasomatism in Sn-Specialised Granites of the Fichtelgebirge (NW Bohemian Massif, Germany). In: Seltmann, R., Kämpf, H., Möller, P., eds., Metallogeny of Collisional Orogens. Czech Geol. Surv., Praha. , 295–300
    Helmy, H. M., Ahmed, A. F., El Mahallawi, M. M., et al., 2004. Pressure, Temperature and Oxygen Fugacity Conditions of Calc-Alkaline Granitoids, Eastern Desert of Egypt, and Tectonic Implications. Journal of African Earth Science, 38(3): 255–268 doi: 10.1016/j.jafrearsci.2004.01.002
    Hossain, I., Tsunogae, T., Rajesh, H. M., 2009. Geothermobarometry and Fluid Inclusions of Dioritic Rocks in Bangladesh: Implications for Emplacement Depth and Exhumation Rate. Journal of Asian Earth Science, 34(6): 731–739 doi: 10.1016/j.jseaes.2008.10.010
    Hossain, I., Tsunogae, T., Rajesh, H. M., 2008. Petrogenetic Characterization of Palaeoproterozoic Basement Rocks from Bangladesh: A Remnant of Magmatism Associated with the Columbia Supercontinent Amalgamation. Geochimica et Cosmochimica Acta, 72: A394 http://adsabs.harvard.edu/abs/2008GeCAS..72Q.394H
    Hossain, I., Tsunogae, T., 2008. Fluid Inclusion Study of Pegmatite and Aplite Veins of Palaeoproterozoic Basement Rocks in Bangladesh: Implications for Magmatic Fluid Compositions and Crystallization Depth. Journal of Mineralogical and Petrological Sciences, 103: 121–125 doi: 10.2465/jmps.071022j
    Hossain, I., Tsunogae, T., Rajesh, H. M., et al., 2007. Palaeoproterozoic U-Pb SHRIMP Zircon Age from Basement Rocks in Bangladesh: A Possible Remnant of the Columbia Supercontinent. Comtes Rendus Geoscience, 339(16): 979–986 doi: 10.1016/j.crte.2007.09.014
    Jacobs, D. C., Parry, W. T., 1979. Geochemistry of Biotite in the Santa Rita Porphyry Copper Deposit, New Mexico. Economic Geology, 74(4): 860–887 doi: 10.2113/gsecongeo.74.4.860
    Kawakatsu, K., Yamaguchi, Y., 1987. Successive Zoning in Amphiboles during Progressive Oxidation in the Daito-Yokota Granitic Complex, Sanin Belt, Southwest Japan. Geochimica et Cosmochimica Acta, 51(3): 535–540 doi: 10.1016/0016-7037(87)90067-6
    Khan, A. A., Chouhan, R. K. S., 1996. The Crustal Dynamics and the Tectonic Trends in the Bengal Basin. Journal of Geodynamics, 22(3–4): 267–286 http://www.onacademic.com/detail/journal_1000035334912110_7901.html
    Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591–609 doi: 10.1007/s00410-006-0122-3
    Lalonde, A. E., Bernard, P., 1993. Composition and Color of Biotite from Granites: Two Useful Properties in the Characterization of Plutonic Suites from the Hepburn Internal Zone of Wopmay Orogen, Northwest Territories. Canadian Mineralogists, 31: 203–217 http://www.researchgate.net/publication/279973060_Composition_and_color_of_biotite_from_granites_two_useful_properties_in_the_characterization_of_plutonic_suites_from_the_Hepburn_internal_zone_of_Wopmay_Orogen_Northwest_Territories
    LaLonde, A. E., Martin, R. F., 1983. The Baie-Des-Moutons Syenitic Complex, La Tabatiere, Qubec, Ⅱ. The Ferromagnesian Minerals. Canadian Mineralogists, 21: 81–91 http://www.researchgate.net/publication/292402007_The_Baie-des-Moutons_syenitic_complex_La_Tabatiere_Quebec_II_The_ferromagnesian_minerals
    Martel, C., Pichavant, M., Holtz, F., et al., 1999. Effects of fO2 and H2O on Andesite Phase Relation between 2 and 4 kbar. Journal of Geophysical Research, 104(B12): 29453–29470 doi: 10.1029/1999JB900191
    Martin, R. F., 2007. Amphiboles in the Igneous Environment. Reviews of Mineralogy and Geochemistry, 67: 323–358 doi: 10.2138/rmg.2007.67.9
    Mishra, B., Saravanan, C. S., Bhattacharya, A., et al., 2007. Im plications of Super Dense Carbonic and Hypersaline Fluid Inclusions in Granites from the Ranchi Area, Chottanagpur Gneissic Complex, Eastern India. Gondwana Research, 11(4): 504–515 doi: 10.1016/j.gr.2006.09.002
    Moore, G., Vennemann, T., Carmichael, I. S. E., 1998. An Empirical Model for the Solubility of H2O in Magmas to 3 Kilobars. American Mineralogists, 83: 36–42 doi: 10.2138/am-1998-1-203
    Mueller, R. F., 1972. Stability of Biotite: A Discussion. American Mineralogists, 57(1–2): 300–316 http://pubs.geoscienceworld.org/msa/ammin/article-pdf/57/1-2/300/4256301/am-1972-300.pdf
    Newman, S., Lowenstern, J. B., 2002. VolatileCalc: A Silicate Melt-H2O-CO2 Solution Model Written in Visual Basic for Excel. Computer & Geosciences, 28: 597–604 http://volcanoes.usgs.gov/observatories/yvo/jlowenstern/other/NewLow.pdf
    O'Neill, H. St. C., Pownceby, M. L., 1993. Thermodynamic Data from Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-"FeO", Co-CoO, Ni-NiO, and Cu-Cu2O Oxygen Buffers, and New Data for the W-WO2 Buffer. Contributions to Mineralogy and Petrology, 114(3): 296–314
    Reimann, K. U., 1993. Geology of Bangladesh. Gebruder Borntraeger, Berlin-Stuttgart. 160
    Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66 doi: 10.1007/s00410-009-0465-7
    Ridolfi, F., Puerini, M., Renzulli, A., et al., 2008. The Magmatic Feeding System of El Reventador Volcano (Sub-Andean Zone, Ecuador) Constrained by Texture, Mineralogy and Thermobarometry of the 2002 Erupted Products. Journal of Volcanology and Geothermal Research, 176(1): 94–106 doi: 10.1016/j.jvolgeores.2008.03.003
    Rieder, M., 2001. Mineral Nomenclature in the Mica Group: The Promise and the Reality. European Journal of Mineralogy, 13: 1009–1012 doi: 10.1127/0935-1221/2001/0013-1009
    Scaillet, B., Evans, B. W., 1999. The 15 June 1991 Eruption of Mount Pinatubo: I, Phase Equilibria and Pre-Eruption P-TfO2-fH2 Conditions of the Dacite Magmas. Journal of Petrology, 40: 381–411 doi: 10.1093/petroj/40.3.381
    Selby, D., Nesbitt, B. E., 2000. Chemical Composition of Biotite from the Casino Porphyry Cu-Au-Mo Mineralization, Yukon, Canada: Evaluation of Magmatic and Hydrothermal Fluid Chemistry. Chemical Geology, 171(1–2): 77–93 http://www.sciencedirect.com/science/article/pii/S0009254100002485
    Solie, D. N., Su, S. C., 1987. An Occurrence of Barich Micas from the Alaska Range. American Mineralogists, 72: 995–999 http://ammin.geoscienceworld.org/content/72/9-10/995
    Speer, J. A., 1987. Evolution of Magmatic AFM Mineral Assemblages in Granitoid Rocks: The Hornblende+Melt=Biotite Reaction in the Liberty Hill Pluton, South Carolina. American Mineralogists, 7: 863–878
    Speer, J. A., 1984. Micas in Igneous Rocks. Reviews in Mineralogy and Geochemistry, 13(1): 299–356 http://www.researchgate.net/publication/328831225_9_MICAS_in_IGNEOUS_ROCKS
    Tahmasbi, Z., Khalili, M., Ahmadi-Khalaji, A., 2009. Thermobarometry of the Astaneh Pluton and Its Related Subvolcanic Rocks (Sanandaj-Sirjan Zone, Western Iran). Journal of Applied Science, 9(5): 874–882 doi: 10.3923/jas.2009.874.882
    Walch, J. N., 1975. Clinopyroxenes and Biotites from the Centre Ⅲ Igneous Complex, Ardnamurchan, Argyllashire. Mineralogical Magazine, 40: 335–345 doi: 10.1180/minmag.1975.040.312.02
    Wones, D. R., 1989. Significance of the Assemblage Titanite+ Magnetite+Quartz in Granitic Rocks. American Mineralogists, 74(7–8): 744–749 http://www.minsocam.org/ammin/AM74/AM74_744.pdf
    Wones, D. R., Eugster, H. P., 1965. Stability of Biotite: Experiment, Theory, and Application. American Mineralogists, 50(9): 1228–1272 http://minsocam.org/ammin/AM50/AM50_1228.pdf
    Yavuz, F., Öztaş, T., 1997. BIOTERM-A Program for Evaluating and Plotting Microprobe Analyses of Biotite from Barren and Mineralized Magmatic Suites. Computer & Geosciences, 23(8): 897–907 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S009830049700071X&originContentFamily=serial&_origin=article&_ts=1464984946&md5=4ca4936a09cf8cd703a84ee1b89e62fd
    Yavuz, F., Gültekin, A. H., Örgün, Y., et al., 2002. Mineral Chemistry of Barium- and Titanium-Bearing Biotites in Calc-Alkaline Volcanic Rocks from the Mezitler Area (Balιkesir-Dursunbey), Western Turkey. Geochemical Journal, 36: 563–580 doi: 10.2343/geochemj.36.563
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(578) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return