Bull, A. L., McNamara, A. K., Ritsema, J., 2009. Synthetic Tomography of Plume Clusters and Thermochemical Piles. Earth and Planetary Science Letters, 278(3-4): 152-162 doi: 10.1016/j.epsl.2008.11.018 |
Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophysical Research Letters, 19(19): 1983-1986 doi: 10.1029/92GL02144 |
Davaille, A., Girard, F., Bars, M. L., 2002. How to Anchor Hotspots in a Convecting Mantle? Earth and Planetary Science Letters, 203(2): 621-634 doi: 10.1016/S0012-821X(02)00897-X |
de Koker, N., 2010. Thermal Conductivity of Mg Opericlase at High Pressure: Implications for the D" Region. Earth and Planetary Science Letters, 292(3-4): 392-398 doi: 10.1016/j.epsl.2010.02.011 |
de Koker, N., 2009. Thermal Conductivity of Mg Opericlase from Equilibrium First Principles Molecular Dynamics. Physical Review Letters, 103(12): 125902 doi: 10.1103/PhysRevLett.103.125902 |
Dubuffet, F., Yuen, D. A., Rabinowicz, M., 1999. Effects of a Realistic Mantle Thermal Conductivity on the Patterns of 3-D Convection. Earth and Planetary Science Letters, 171(3): 401-409 doi: 10.1016/S0012-821X(99)00165-X |
Duffy, T. S., Ahrens, T. J., 1993. Thermal Expansion of Mantle and Core Materials at very High Pressures. Geophysical Research Letters, 20(11): 1103-1106 doi: 10.1029/93GL00479 |
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356 doi: 10.1016/0031-9201(81)90046-7 |
Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049-1056 doi: 10.1038/35074000 |
Ghias, S. R., Jarvis, G. T., 2008. Mantle Convection Models with Temperature- and Depth-Dependent Thermal Expansivity. Journal of Geophysical Research, 113(B8): B08408 http://www.onacademic.com/detail/journal_1000035773157410_07b0.html |
Goncharov, A. F., Beck, P., Struzhkin, V. V., et al., 2009. Thermal Conductivity of Lower-Mantle Minerals. Physics of the Earth and Planetary Interiors, 174(1-4): 24-32 doi: 10.1016/j.pepi.2008.07.033 |
Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth's Lower Mantle. Physics of the Earth and Planetary Interiors, 180(3-4): 148-153 doi: 10.1016/j.pepi.2010.02.002 |
Gonnermann, H. M., Jellinek, A. M., Richards, M. A., et al., 2004. Modulation of Mantle Plumes and Heat Flow at the Core Mantle Boundary by Plate-Scale Flow: Results from Laboratory Experiments. Earth and Planetary Science Letters, 226(1): 53-67 http://www.onacademic.com/detail/journal_1000035379771010_9db1.html |
Hansen, U., Yuen, D. A., 1993. High Rayleigh Number Regime of Temperature-Dependent Viscosity Convection and the Earth's Early Thermal History. Geophysical Research Letters, 20(20): 2191-2194 doi: 10.1029/93GL02416 |
Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Physics of the Earth and Planetary Interiors, 77(3-4): 205-223 doi: 10.1016/0031-9201(93)90099-U |
Hofmeister, A. M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283(5408): 1699-1706 doi: 10.1126/science.283.5408.1699 |
Jellinek, A. M., Lenardic, A., Manga, M., 2002. The Influence of Interior Mantle Temperature on the Structure of Plumes: Heads for Venus, Tails for the Earth. Geophysical Research Letters, 29(11): 1532 doi: 10.1029/2001GL014624 |
Kameyama, M., Ichikawa, H., Miyauchi, A., 2013. A Linear Stability Analysis on the Onset of Thermal Convection of a Fluid with Strongly Temperature-Dependent Viscosity in a Spherical Shell. Theoretical and Computational Fluid Dynamics, 27(1-2): 21-40 doi: 10.1007/s00162-011-0250-x |
Kameyama, M., Ogawa, M., 2000. Transitions in Thermal Convection with Strongly Temperature-Dependent Viscosity in a Wide Box. Earth and Planetary Science Letters, 180(3): 355-367 http://www.onacademic.com/detail/journal_1000035462659010_7adc.html |
Karato, S. I., Karki, B. B., 2001. Origin of Lateral Variation of Seismic Wave Velocities and Density in the Deep Mantle. Journal of Geophysical Research, 106(R10): 21771-21783 http://astrogeo.oxfordjournals.org/external-ref?access_num=10.1029/2001JB000214&link_type=DOI |
Katsura, T., Yokoshi, S., Song, M. S., et al., 2004. Thermal Expansion of Mg2SiO4 Ringwoodite at High Pressures. Journal of Geophysical Research, 109(B12): B12209 doi: 10.1029/2004JB003094 |
Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. PVT Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophysical Research Letters, 36(1): L01305 http://www2.jpgu.org/meeting/2009/program/session/pdf/I212/I212-P006_e.pdf |
Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proceedings of the National Academy of Sciences, 106(52): 22119-22123 doi: 10.1073/pnas.0905920106 |
Kono, Y., Irifune, T., Higo, Y., et al., 2010. PVT Relation of MgO Derived by Simultaneous Elastic Wave Velocity and In Situ X-Ray Measurements: A New Pressure Scale for the Mantle Transition Region. Physics of the Earth and Planetary Interiors, 183(12): 196-211, doi: 10.1016/j.pepi.2010.03.010 |
Konopliv, A. S., Banerdt, W. B., Sjogren, W. L., 1999. Venus Gravity: 180th Degree and Order Model. Icarus, 139(1): 3-18 doi: 10.1006/icar.1999.6086 |
Lenardic, A., Richards, M. A., Busse, F. H., 2006. Depth-Dependent Rheology and the Horizontal Length Scale of Mantle Convection. Journal of Geophysical Research, 111(B7): B07404 http://www.mantleplumes.org/WebDocuments/LenardicEtAl2006.pdf |
Masters, G., Laske, G., Gilbert, F., 2000. Matrix Autoregressive Analysis of Free-Oscillation Coupling and Splitting. Geophysical Journal International, 143(2): 478-489 doi: 10.1046/j.1365-246X.2000.01261.x |
McNamara, A. K., Zhong, S. J., 2005. Degree-One Mantle Convection: Dependence on Internal Heating and Temperature-Dependent Rheology. Geophysical Research Letters, 32(7062): L01301 http://anquetil.colorado.edu/szhong/papers/McNamara_Zhong_GRL2005.pdf |
Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations. Physics of Fluids, 7(9): 2154 doi: 10.1063/1.868465 |
Mosenfelder, J. L., Asimow, P. D., Frost, D. J., et al., 2009. The MgSiO3 System at High Pressure: Thermodynamic Properties of Perovskite, Postperovskite, and Melt from Global Inversion of Shock and Static Compression Data. Journal of Geophysical Research, 114(B1): B01203 http://adsabs.harvard.edu/abs/2009JGRB..114.1203M |
Ogawa, M., Schubert, G., Zebib, A., 1991. Numerical Simulations of Three-Dimensional Thermal Convection in a Fluid with Strongly Temperature-Dependent Viscosity. Journal of Fluid Mechanics, 233(1): 299-328 http://www.researchgate.net/publication/231971372_Numerical_simulations_of_three_dimensional_thermal_convection_of_a_strongly_temperature-dependent_viscosity_fluid_J_Fluid_Mech_233_pp_299-328 |
Roberts, J. H., Zhong, S. J., 2006. Degree-1 Convection in the Martian Mantle and the Origin of the Hemispheric Dichotomy. Journal of Geophysical Research, 111(E6): E06013 http://www.es.ucsc.edu/~jhr/research/Roberts_Zhong2006-jgr-final.pdf |
Robin, C. M. I., Jellinek, A. M., Thayalan, V., et al., 2007. Transient Mantle Convection on Venus: The Paradoxical Coexistence of Highlands and Coronae in the BAT Region. Earth and Planetary Science Letters, 256(1): 100-119 http://www.onacademic.com/detail/journal_1000035379482410_6a6e.html |
Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univercity Press, Cambridge |
Solomatov, V. S., 1995. Scaling of Temperature- and Stress-Dependent Viscosity Convection. Physics of Fluids, 7(2): 266-275 doi: 10.1063/1.868624 |
Solomatov, V. S., Moresi, L. N., 1996. Stagnant Lid Convection on Venus. Journal of Geophysical Research, 101(2): 4737-4753 |
Solomatov, V. S., Moresi, L. N., 1997. Three Regimes of Mantle Convection with Non-Newtonian Viscosity and Stagnant Lid Convection on the Terrestrial Planets. Geophysical Research Letters, 24(15): 1907-1910 doi: 10.1029/97GL01682 |
Šrámek, O., Zhong, S. J., 2010. Long-Wavelength Stagnant Lid Convection with Hemispheric Variation in Lithospheric Thickness: Link between Martian Crustal Dichotomy and Tharsis? Journal of Geophysical Research, 115(E9): E09010 doi: 10.1029/2010JE003597 |
Stacey, F. D., Davis, P. M., 2008. Physics of the Earth, 4th ed. . Wiley, New York |
Stengel, K. C., Oliver, D. S., Booker, J. R., 1982. Onset of Convection in a Variable-Viscosity Fluid. Journal of Fluid Mechanics, 120(1): 411-431 http://www.onacademic.com/detail/journal_1000035831494210_feff.html |
Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 1. Pseudoplastic Yielding. Geochemistry Geophysics Geosystems, 1(8): 1021 |
Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 2. Strain Weakening and Asthenosphere. Geochemistry Geophysics Geosystems, 1(8): 1026 http://pdfs.semanticscholar.org/f8fc/20fae1e54e6370a4425ce6942c6c17647c5f.pdf |
Tackley, P. J., Xie, S., Nakagawa, T., et al., 2005. Numerical and Laboratory Studies of Mantle Convection: Philosophy, Accomplishments, and Thermochemical Structure and Evolution. Geophysical Monograph, 160: 83-99 http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.gfd.geophys.ethz.ch%2F~pjt%2Fpapers%2FTackleyMono05.pdf |
Tang, X., Dong, J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior. Proceedings of the National Academy of Sciences, 107(10): 4539-4543 doi: 10.1073/pnas.0907194107 |
Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth and Planetary Science Letters, 298(1-2): 229-243 doi: 10.1016/j.epsl.2010.08.001 |
Turcotte, D. L., Schubert, G., 2002. . Cambridge Univercity Press, Cambridge |
van den Berg, A. P., Rainey, E. S. G., Yuen, D. A., 2005. The Combined Influences of Variable Thermal Conductivity, Temperature- and Pressure-Dependent Viscosity and Core-Mantle Coupling on Thermal Evolution. Physics of the Earth and Planetary Interiors, 149(3): 259-278 http://www.sciencedirect.com/science/article/pii/S0031920104003814 |
van den Berg, A. P., Yuen, D. A., Allwardt, J. R., 2002. Non-Linear Effects from Variable Thermal Conductivity and Mantle Internal Heating: Implications for Massive Melting and Secular Cooling of the Mantle. Physics of the Earth and Planetary Interiors, 129(3-4): 359-375 doi: 10.1016/S0031-9201(01)00304-1 |
Yoshida, M., 2008. Mantle Convection with Longest-Wavelength Thermal Heterogeneity in a 3-D Spherical Model: Degree One or Two?Geophysical Research Letters, 35(23): L23302 doi: 10.1029/2008GL036059 |
Yoshida, M., Kageyama, A., 2006. Low-Degree Mantle Convection with Strongly Temperature- and Depth-Dependent Viscosity in a Three-Dimensional Spherical Shell. Journal of Geophysical Research, 111(B3): B03412 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8C9BE7B80F109DC882A0FC7F62B6841A?doi=10.1.1.262.1527&rep=rep1&type=pdf |
Zhao, D., 2004. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics. Physics of the Earth and Planetary Interiors, 146(1-2): 3-34 doi: 10.1016/j.pepi.2003.07.032 |
Zhong, S. J., Zuber, M. T., 2001. Degree-1 Mantle Convection and the Crustal Dichotomy on Mars. Earth and Planetary Science Letters, 189(1-2): 75-84 doi: 10.1016/S0012-821X(01)00345-4 |