Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 1
Feb 2014
Turn off MathJax
Article Contents
Arata Miyauchi, Masanori Kameyama, Hiroki Ichikawa. Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity. Journal of Earth Science, 2014, 25(1): 126-139. doi: 10.1007/s12583-014-0405-y
Citation: Arata Miyauchi, Masanori Kameyama, Hiroki Ichikawa. Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity. Journal of Earth Science, 2014, 25(1): 126-139. doi: 10.1007/s12583-014-0405-y

Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity

doi: 10.1007/s12583-014-0405-y
More Information
  • Corresponding author: Arata Miyauchi, miyauch@gmail.com
  • Received Date: 14 Sep 2012
  • Accepted Date: 20 Jan 2013
  • Publish Date: 01 Feb 2014
  • A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and conductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizontal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which successfully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.

     

  • loading
  • Bull, A. L., McNamara, A. K., Ritsema, J., 2009. Synthetic Tomography of Plume Clusters and Thermochemical Piles. Earth and Planetary Science Letters, 278(3-4): 152-162 doi: 10.1016/j.epsl.2008.11.018
    Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophysical Research Letters, 19(19): 1983-1986 doi: 10.1029/92GL02144
    Davaille, A., Girard, F., Bars, M. L., 2002. How to Anchor Hotspots in a Convecting Mantle? Earth and Planetary Science Letters, 203(2): 621-634 doi: 10.1016/S0012-821X(02)00897-X
    de Koker, N., 2010. Thermal Conductivity of Mg Opericlase at High Pressure: Implications for the D" Region. Earth and Planetary Science Letters, 292(3-4): 392-398 doi: 10.1016/j.epsl.2010.02.011
    de Koker, N., 2009. Thermal Conductivity of Mg Opericlase from Equilibrium First Principles Molecular Dynamics. Physical Review Letters, 103(12): 125902 doi: 10.1103/PhysRevLett.103.125902
    Dubuffet, F., Yuen, D. A., Rabinowicz, M., 1999. Effects of a Realistic Mantle Thermal Conductivity on the Patterns of 3-D Convection. Earth and Planetary Science Letters, 171(3): 401-409 doi: 10.1016/S0012-821X(99)00165-X
    Duffy, T. S., Ahrens, T. J., 1993. Thermal Expansion of Mantle and Core Materials at very High Pressures. Geophysical Research Letters, 20(11): 1103-1106 doi: 10.1029/93GL00479
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356 doi: 10.1016/0031-9201(81)90046-7
    Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049-1056 doi: 10.1038/35074000
    Ghias, S. R., Jarvis, G. T., 2008. Mantle Convection Models with Temperature- and Depth-Dependent Thermal Expansivity. Journal of Geophysical Research, 113(B8): B08408 http://www.onacademic.com/detail/journal_1000035773157410_07b0.html
    Goncharov, A. F., Beck, P., Struzhkin, V. V., et al., 2009. Thermal Conductivity of Lower-Mantle Minerals. Physics of the Earth and Planetary Interiors, 174(1-4): 24-32 doi: 10.1016/j.pepi.2008.07.033
    Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth's Lower Mantle. Physics of the Earth and Planetary Interiors, 180(3-4): 148-153 doi: 10.1016/j.pepi.2010.02.002
    Gonnermann, H. M., Jellinek, A. M., Richards, M. A., et al., 2004. Modulation of Mantle Plumes and Heat Flow at the Core Mantle Boundary by Plate-Scale Flow: Results from Laboratory Experiments. Earth and Planetary Science Letters, 226(1): 53-67 http://www.onacademic.com/detail/journal_1000035379771010_9db1.html
    Hansen, U., Yuen, D. A., 1993. High Rayleigh Number Regime of Temperature-Dependent Viscosity Convection and the Earth's Early Thermal History. Geophysical Research Letters, 20(20): 2191-2194 doi: 10.1029/93GL02416
    Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Physics of the Earth and Planetary Interiors, 77(3-4): 205-223 doi: 10.1016/0031-9201(93)90099-U
    Hofmeister, A. M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283(5408): 1699-1706 doi: 10.1126/science.283.5408.1699
    Jellinek, A. M., Lenardic, A., Manga, M., 2002. The Influence of Interior Mantle Temperature on the Structure of Plumes: Heads for Venus, Tails for the Earth. Geophysical Research Letters, 29(11): 1532 doi: 10.1029/2001GL014624
    Kameyama, M., Ichikawa, H., Miyauchi, A., 2013. A Linear Stability Analysis on the Onset of Thermal Convection of a Fluid with Strongly Temperature-Dependent Viscosity in a Spherical Shell. Theoretical and Computational Fluid Dynamics, 27(1-2): 21-40 doi: 10.1007/s00162-011-0250-x
    Kameyama, M., Ogawa, M., 2000. Transitions in Thermal Convection with Strongly Temperature-Dependent Viscosity in a Wide Box. Earth and Planetary Science Letters, 180(3): 355-367 http://www.onacademic.com/detail/journal_1000035462659010_7adc.html
    Karato, S. I., Karki, B. B., 2001. Origin of Lateral Variation of Seismic Wave Velocities and Density in the Deep Mantle. Journal of Geophysical Research, 106(R10): 21771-21783 http://astrogeo.oxfordjournals.org/external-ref?access_num=10.1029/2001JB000214&link_type=DOI
    Katsura, T., Yokoshi, S., Song, M. S., et al., 2004. Thermal Expansion of Mg2SiO4 Ringwoodite at High Pressures. Journal of Geophysical Research, 109(B12): B12209 doi: 10.1029/2004JB003094
    Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. PVT Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophysical Research Letters, 36(1): L01305 http://www2.jpgu.org/meeting/2009/program/session/pdf/I212/I212-P006_e.pdf
    Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proceedings of the National Academy of Sciences, 106(52): 22119-22123 doi: 10.1073/pnas.0905920106
    Kono, Y., Irifune, T., Higo, Y., et al., 2010. PVT Relation of MgO Derived by Simultaneous Elastic Wave Velocity and In Situ X-Ray Measurements: A New Pressure Scale for the Mantle Transition Region. Physics of the Earth and Planetary Interiors, 183(12): 196-211, doi: 10.1016/j.pepi.2010.03.010
    Konopliv, A. S., Banerdt, W. B., Sjogren, W. L., 1999. Venus Gravity: 180th Degree and Order Model. Icarus, 139(1): 3-18 doi: 10.1006/icar.1999.6086
    Lenardic, A., Richards, M. A., Busse, F. H., 2006. Depth-Dependent Rheology and the Horizontal Length Scale of Mantle Convection. Journal of Geophysical Research, 111(B7): B07404 http://www.mantleplumes.org/WebDocuments/LenardicEtAl2006.pdf
    Masters, G., Laske, G., Gilbert, F., 2000. Matrix Autoregressive Analysis of Free-Oscillation Coupling and Splitting. Geophysical Journal International, 143(2): 478-489 doi: 10.1046/j.1365-246X.2000.01261.x
    McNamara, A. K., Zhong, S. J., 2005. Degree-One Mantle Convection: Dependence on Internal Heating and Temperature-Dependent Rheology. Geophysical Research Letters, 32(7062): L01301 http://anquetil.colorado.edu/szhong/papers/McNamara_Zhong_GRL2005.pdf
    Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations. Physics of Fluids, 7(9): 2154 doi: 10.1063/1.868465
    Mosenfelder, J. L., Asimow, P. D., Frost, D. J., et al., 2009. The MgSiO3 System at High Pressure: Thermodynamic Properties of Perovskite, Postperovskite, and Melt from Global Inversion of Shock and Static Compression Data. Journal of Geophysical Research, 114(B1): B01203 http://adsabs.harvard.edu/abs/2009JGRB..114.1203M
    Ogawa, M., Schubert, G., Zebib, A., 1991. Numerical Simulations of Three-Dimensional Thermal Convection in a Fluid with Strongly Temperature-Dependent Viscosity. Journal of Fluid Mechanics, 233(1): 299-328 http://www.researchgate.net/publication/231971372_Numerical_simulations_of_three_dimensional_thermal_convection_of_a_strongly_temperature-dependent_viscosity_fluid_J_Fluid_Mech_233_pp_299-328
    Roberts, J. H., Zhong, S. J., 2006. Degree-1 Convection in the Martian Mantle and the Origin of the Hemispheric Dichotomy. Journal of Geophysical Research, 111(E6): E06013 http://www.es.ucsc.edu/~jhr/research/Roberts_Zhong2006-jgr-final.pdf
    Robin, C. M. I., Jellinek, A. M., Thayalan, V., et al., 2007. Transient Mantle Convection on Venus: The Paradoxical Coexistence of Highlands and Coronae in the BAT Region. Earth and Planetary Science Letters, 256(1): 100-119 http://www.onacademic.com/detail/journal_1000035379482410_6a6e.html
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univercity Press, Cambridge
    Solomatov, V. S., 1995. Scaling of Temperature- and Stress-Dependent Viscosity Convection. Physics of Fluids, 7(2): 266-275 doi: 10.1063/1.868624
    Solomatov, V. S., Moresi, L. N., 1996. Stagnant Lid Convection on Venus. Journal of Geophysical Research, 101(2): 4737-4753
    Solomatov, V. S., Moresi, L. N., 1997. Three Regimes of Mantle Convection with Non-Newtonian Viscosity and Stagnant Lid Convection on the Terrestrial Planets. Geophysical Research Letters, 24(15): 1907-1910 doi: 10.1029/97GL01682
    Šrámek, O., Zhong, S. J., 2010. Long-Wavelength Stagnant Lid Convection with Hemispheric Variation in Lithospheric Thickness: Link between Martian Crustal Dichotomy and Tharsis? Journal of Geophysical Research, 115(E9): E09010 doi: 10.1029/2010JE003597
    Stacey, F. D., Davis, P. M., 2008. Physics of the Earth, 4th ed. . Wiley, New York
    Stengel, K. C., Oliver, D. S., Booker, J. R., 1982. Onset of Convection in a Variable-Viscosity Fluid. Journal of Fluid Mechanics, 120(1): 411-431 http://www.onacademic.com/detail/journal_1000035831494210_feff.html
    Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 1. Pseudoplastic Yielding. Geochemistry Geophysics Geosystems, 1(8): 1021
    Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations 2. Strain Weakening and Asthenosphere. Geochemistry Geophysics Geosystems, 1(8): 1026 http://pdfs.semanticscholar.org/f8fc/20fae1e54e6370a4425ce6942c6c17647c5f.pdf
    Tackley, P. J., Xie, S., Nakagawa, T., et al., 2005. Numerical and Laboratory Studies of Mantle Convection: Philosophy, Accomplishments, and Thermochemical Structure and Evolution. Geophysical Monograph, 160: 83-99 http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.gfd.geophys.ethz.ch%2F~pjt%2Fpapers%2FTackleyMono05.pdf
    Tang, X., Dong, J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior. Proceedings of the National Academy of Sciences, 107(10): 4539-4543 doi: 10.1073/pnas.0907194107
    Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth and Planetary Science Letters, 298(1-2): 229-243 doi: 10.1016/j.epsl.2010.08.001
    Turcotte, D. L., Schubert, G., 2002. . Cambridge Univercity Press, Cambridge
    van den Berg, A. P., Rainey, E. S. G., Yuen, D. A., 2005. The Combined Influences of Variable Thermal Conductivity, Temperature- and Pressure-Dependent Viscosity and Core-Mantle Coupling on Thermal Evolution. Physics of the Earth and Planetary Interiors, 149(3): 259-278 http://www.sciencedirect.com/science/article/pii/S0031920104003814
    van den Berg, A. P., Yuen, D. A., Allwardt, J. R., 2002. Non-Linear Effects from Variable Thermal Conductivity and Mantle Internal Heating: Implications for Massive Melting and Secular Cooling of the Mantle. Physics of the Earth and Planetary Interiors, 129(3-4): 359-375 doi: 10.1016/S0031-9201(01)00304-1
    Yoshida, M., 2008. Mantle Convection with Longest-Wavelength Thermal Heterogeneity in a 3-D Spherical Model: Degree One or Two?Geophysical Research Letters, 35(23): L23302 doi: 10.1029/2008GL036059
    Yoshida, M., Kageyama, A., 2006. Low-Degree Mantle Convection with Strongly Temperature- and Depth-Dependent Viscosity in a Three-Dimensional Spherical Shell. Journal of Geophysical Research, 111(B3): B03412 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=8C9BE7B80F109DC882A0FC7F62B6841A?doi=10.1.1.262.1527&rep=rep1&type=pdf
    Zhao, D., 2004. Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics. Physics of the Earth and Planetary Interiors, 146(1-2): 3-34 doi: 10.1016/j.pepi.2003.07.032
    Zhong, S. J., Zuber, M. T., 2001. Degree-1 Mantle Convection and the Crustal Dichotomy on Mars. Earth and Planetary Science Letters, 189(1-2): 75-84 doi: 10.1016/S0012-821X(01)00345-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(721) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return