Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 1
Feb 2014
Turn off MathJax
Article Contents
Tilak Hewawasam, G W A R Fernando, Danushka Priyashantha. Geo-vegetation Mapping and Soil Geochemical Characteristics of the Indikolapelessa Serpentinite Outcrop, Southern Sri Lanka. Journal of Earth Science, 2014, 25(1): 152-168. doi: 10.1007/s12583-014-0409-7
Citation: Tilak Hewawasam, G W A R Fernando, Danushka Priyashantha. Geo-vegetation Mapping and Soil Geochemical Characteristics of the Indikolapelessa Serpentinite Outcrop, Southern Sri Lanka. Journal of Earth Science, 2014, 25(1): 152-168. doi: 10.1007/s12583-014-0409-7

Geo-vegetation Mapping and Soil Geochemical Characteristics of the Indikolapelessa Serpentinite Outcrop, Southern Sri Lanka

doi: 10.1007/s12583-014-0409-7
More Information
  • Corresponding author: Tilak Hewawasam, tilak@pdn.ac.lk
  • Received Date: 19 Jun 2012
  • Accepted Date: 22 Oct 2012
  • Publish Date: 01 Feb 2014
  • The serpentinite blocks of Indikolapelessa, located along an identified litho-tectonic boundary between the Highland Complex (HC) and the Vijayan Complex (VC) of Sri Lanka, have undergone extensive lateralization with metal enrichment. Characteristic serpentinite vegetation with some endemic species was recognized in the soils and supergene deposits develop on serpentinite lithology. This type of geological and ecological relationship forms vegetation covers on serpentinite lithologies which are sharply demarcated from the surrounding metamorphic terrains. The aforesaid "geo-ecological phenomenon" can be used as a tool for geo-vegetation mapping in ultramafic terrains to trace the geological boundaries in landscapes where rock outcrops are virtually absent. We successfully applied the concept of geo-vegetation mapping in order to demarcate the boundary of underlain serpentinite rocks from surrounding non-serpentinite metamorphic rocks (e.g. granitic gneiss). The hypothesis was supported by the geochemical variations of soils/supergene deposits found at serpentinite and non-serpentinite sites, especially immobile elements and some trace elements. Based on whole rock chemistry and soil chemical data obtained, we suggest that the Indikolapelessa serpentinite outcrop, together with the other four serpentinite outcrops, is more likely to represent the Mg-rich mantle fragments at the time of overthrusting of the two crustal blocks of HC and VC during the Pan-African event.

     

  • loading
  • Brady, K. U., Kruckeberg, A. R., Bradshaw, H. D., 2005. Evolutionary Ecology of Plant Adaptation to Serpentine Soils. Annual Rev. Ecol. Evol. Syst. , 36: 243–266 doi: 10.1146/annurev.ecolsys.35.021103.105730
    Brooks, R. R., 1972. Geobotany and Biogeochemistry in Mineral Exploration. Harper & Row, New York
    Buchel, G., 1991. Gravimetric Investigations along Tectonic Boundaries between the Highland/Southwestern Complex and the Vijayan Complex in Sri Laka. In: Kroner, A., ed., The Crystalline Crust of Sri Lanka, Part 1, Summary of the Research of the German-Sri Lankan Consortium. Geological Survey Department of Sri Lanka, Colombo. 89–93
    Cooray, P. G., 1994. The Precambrian of Sri Lanka: A Historical Review. Precambrian Research, 66(1–4): 3–18
    Dissanayake, C. B., 1982. The Geology and Geochemistry of the Uda Walawe Serpentinite, Sri Lanka. Journal of National Science Councial, Sri Lanka, 10(1): 13–34
    Dissanayake, C. B., Van Riel, B. J., 1978. Petrology and Geochemistry of a Recently Discovered Nickeliferrous Serpentinite from Sri Lanka. Journal of Geological Society of India, 19: 464–471
    Evans, B. W., 1977. Metamorphism of Alpine Peridotite and Serpentinite. Ann. Rev. Earth. Planet. Sci. , 5: 397–447 doi: 10.1146/annurev.ea.05.050177.002145
    Fernando, G. W. A. R., 2001. Genesis of Metasomatic Sapphirine-Corundum-Spinel-Bearing Granulites in Sri Lanka: An Integrated Field, Petrological and Geochemical Study: [Dissertation]. University of Mainz, Mainz. 175
    Hansen, E. C., Janardhan, A. S., Newton, R. C., et al., 1987. Arrested Charnockite Formation in Southern India and Sri Lanka. Contributions to Mineralogy and Petrololgy, 96(2): 225–244 doi: 10.1007/BF00375236
    Hatherton, T., Pattiaratchi, D. B., Ranasinghe, V. V. C., 1975. Gravity Map of Sri Lanka, Professional Paper No. 3. Sri Lanka Geological Survey Department, Colombo. 39
    Johnston, W. R., Proctor, J., 1984. The Effects of Magnesium, Nickel, Calcium and Micronutrients on the Root Surface Phosphatase Activities of a Serpentine and Non-Serpentine Clon of Festuca Rubra L. New Phytologist, 96: 95–101 doi: 10.1111/j.1469-8137.1984.tb03546.x
    Kleinschrodt, R., 1994. Large-Scale Thrusting in the Lower Crustal Basement of Sri Lanka. Precambrian Research, 66(1–4): 39–57
    Kröner, A., Kehelpannala, K. V. W., Kriegsman, L. M., 1994. Origin of Compositional Layering and Mechanism of Crustal Thickening in the High-Grade Gneiss Terrain of Sri Lanka. Precambrian Research, 66(1–4): 21–37
    Kruckeberg, A. R., 1984. California Serpentines: Flora, Vegetation, Geology, Soils and Management Problems: [Dissertation]. University of California, Berkeley
    Lazaro, J. D., Kidd, P. S., Martinez, C. M., 2006. A Photochemical Study of the Tras-Os-Montes Region (NE Portugal): Possible Species for Plant Based Soil Remediation Technologies. Sciences of Total Environment, 354: 265–277 doi: 10.1016/j.scitotenv.2005.01.001
    Macnair, M. R., Gardner, M., 1998. The Evolution of Edaphic Endemics. In: Howard, D. J., Berlocher, S. H., eds., Endless Forms: Species and Speciation. Oxford University Press, New York. 157–171
    Milisenda, C. C., Liew, T. C., Hofmann, A. W., et al., 1994. Nd Isotopic Mapping of the Sri Lanka Basement: Update, and Additional Constrains from Sr Isotopes. Precambrian Research, 66(1–4): 95–110
    Munasinghe, T., Dissanayake, C. B., 1982. A Plate Tectonic Model for the Geological Evolution of Sri Lanka. Journal of Geological Society of India, 23: 369–380
    Nash, G. D., Hernandez, M. W., 2001. Cost-Effective Vegetation Anomaly Mapping for Geothermal Explorations, Twenty-Sixth Workshop on Geothermal Reservoir Engineering. 2001 SGP-TR-168, Stanford University, Stanford, California
    Oze, C., Schroth, A. W., Coleman, R. G., 2008. Growing up Green on Serpentine Soils: Biogeochemistry of Serpentinite Vegetation in the Central Coast Range of California. Applied Geochmistery, 23: 3391–3403 doi: 10.1016/j.apgeochem.2008.07.014
    Prame, W. K. B. N., Pohl, J., 1994. Geochemistry of Pelitic and Psammopelitic Precambrian Metasediments from Southwestern Sri Lanka: Implications for Two Contrasting Source-Terrains and Tectonic Settings. Precambrian Research, 66: 223–244 doi: 10.1016/0301-9268(94)90052-3
    Rajakaruna, N., Baker, A. J. M., 2004. Serpentine: A Model Habitat for Botanical Research in Sri Lanka. Ceylon Journal of Science (Biological Science), 32: 1–19
    Rajakaruna, N., Bohn, A. B., 2002. Serpentine and Its Vegetation: A Preliminary Study from Sri Lanka. Journal of Applied Botany, 76(1–2): 20–28
    Rajakaruna, N., Harries, T. B., Alexander, E. B., 2009. Serpentine Geoecology of Eastern North America: A Review. Rhodora, 111(945): 21–108 doi: 10.3119/07-23.1
    Rajakaruna, N., Harris, C. S., Towers, G. H. N., 2002. Antimicrobial Activity of Plants Collected from Serpentine Outcrops in Sri Lanka. Pharmaceutical Biology, 40: 235–244 doi: 10.1076/phbi.40.3.235.5825
    Reddy, R. A., Balkwill, K., Mclellan, T., 2009. Plant Species Richness and Diversity of the Serpentine Areas on the Witwatersrand. Plant Ecology, 201: 365–381 doi: 10.1007/s11258-008-9455-5
    Reeves, R. D., 2003. Tropical Hyperaccumulators of Metals and Their Potential for Phytoextraction. Plant and Soil, 249: 57–65 doi: 10.1023/A:1022572517197
    Reeves, R. D., Baker, A. J. M., Borhidi, A., 1999. Nickel Hyperaccumulation in the Serpentine Flora of Cuba. Annals of Botany, 83: 29–38 doi: 10.1006/anbo.1998.0786
    Roberts, B. A., Proctor, J., 1992. The Ecology of Areas with Serpentinized Rocks: A World View. Kluwer Academic Publishers, Nederlands. 420
    Vanacker, V., Von Blanckenburg, F., Hewawasam, T., 2007. Constraining Landscape Development of the Sri Lankan Escarpment with Cosmogenic Nuclides in River Sediment. Earth and Planetary Science Letters, 253: 402–414 doi: 10.1016/j.epsl.2006.11.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views(3650) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return