Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 2
Apr 2014
Turn off MathJax
Article Contents
Zhanfang Hou, Jijun Li, Chunhui Song, Jun Zhang, Zhengchuang Hui, Shiyue Chen, Feng Xian. Understanding Miocene Climate Evolution in Northeastern Tibet: Stable Carbon and Oxygen Isotope Records from the Western Tianshui Basin, China. Journal of Earth Science, 2014, 25(2): 357-365. doi: 10.1007/s12583-014-0416-8
Citation: Zhanfang Hou, Jijun Li, Chunhui Song, Jun Zhang, Zhengchuang Hui, Shiyue Chen, Feng Xian. Understanding Miocene Climate Evolution in Northeastern Tibet: Stable Carbon and Oxygen Isotope Records from the Western Tianshui Basin, China. Journal of Earth Science, 2014, 25(2): 357-365. doi: 10.1007/s12583-014-0416-8

Understanding Miocene Climate Evolution in Northeastern Tibet: Stable Carbon and Oxygen Isotope Records from the Western Tianshui Basin, China

doi: 10.1007/s12583-014-0416-8
More Information
  • Corresponding author: Zhanfang Hou, houzf@ieecas.cn
  • Received Date: 21 Sep 2012
  • Accepted Date: 27 Jan 2013
  • Publish Date: 01 Apr 2014
  • To investigate climate evolution during the Miocene, especially during the Middle Miocene climate transition on the northeastern Tibetan Plateau, stable oxygen and carbon isotopes of carbonates from a 288-m-thick lacustrine-fluvial sediment sequence covering the period from 17.1 to 6.1 Ma from Tianshui Basin, China, were analyzed. The relatively low stable oxygen isotope values indicate the prevalence of wet climate conditions during the period of 17.1–13.6 Ma, an interval corresponding to the well-known Middle Miocene Climate Optimum. The interval between 13.6 and 11.0 Ma (i.e., the late Middle Miocene) is marked by a progressive increase in the δ18O values, indicative of a decrease in precipitation, probably linked to the expansion of the East Antarctic Ice Sheet and global cooling since about 14 Ma. The climate in the study area continued to get drier as shown by the enrichment of the heavy oxygen isotope from 11 Ma. We attribute these stepwise climatic changes as revealed by our carbonate δ18O record from the northeastern Tibetan Plateau to the sustained global cooling that may have reduced moist transport to Central Asia, which in turn led to a permanent aridification.

     

  • loading
  • Alonso-Zarza, A. M., Zhao, Z., Song, C. H., et al., 2009. Mud-Flat/Distal Fan and Shallow Lake Sedimentation (Upper Vallesian-Turolian) in the Tianshui Basin, Central China: Evidence Against the Late Miocene Eolian Loess. Sedimentary Geology, 22: 42–51
    An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature 411: 62–66
    Barron, E. J., 1985. Explanation of the Tertiary Global Cooling Trend. Palaeogeography, Palaeoclimatology, Palaeoecology, 50: 45–61 doi: 10.1016/S0031-0182(85)80005-5
    Cheng, X. R., Zhao, Q. H., Wang, J. L., et al., 2004. Data Report: Stable Isotopes from Sites 1147 and 1148. In: Prell, W. L., Wang, P., Blum, P., et al., eds., Proceedings of the Ocean Drilling Program: Scientific Results, 184: 1–12
    Chung, C. H., Koh, Y. K., 2005. Palynostratigraphic and Palaeoclimatic Investigations on the Miocene Deposits in the Pohang Area, South Korea. Review of Palaeobotany and Palynology, 135: 1–11 doi: 10.1016/j.revpalbo.2005.02.002
    Clift, P., Lee, J. I., Clark, M. K., et al., 2002. Erosional Response of South China to Arc Rifting and Monsoonal Strengthening: A Record from the South China Sea. Marine Geology, 184: 207–226 doi: 10.1016/S0025-3227(01)00301-2
    Cyr, A. J., Currie, B. S., Rowley, D. B., 2005. Geochemical Evaluation of Fenghuoshan Group Lacustrine Carbonates, North-Central Tibet: Implications for the Paleoaltimetry of the Eocene Tibetan Plateau. The Journal of Geology, 113: 517–533 doi: 10.1086/431907
    Dettman, D. L., Kohn, M. J., Quade, J., et al., 2001. Seasonal Stable Isotope Evidence for a Strong Asian Monsoon throughout the Past 10.7 m. y. . Geology, 29(1): 31–34 doi: 10.1130/0091-7613(2001)029<0031:SSIEFA>2.0.CO;2
    Dettman, D. L., Fang, X. M., Garzione, C. N., et al., 2003. Uplift Driven Climate Change at 12 Ma: A Long δ18O Record from the NE Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 214: 267–277 doi: 10.1016/S0012-821X(03)00383-2
    Dutton, J. F., Barron, E. J., 1997. Miocene to Present Vegetation Changes: A Possible Piece of the Cenozoic Cooling Puzzle. Geology, 25(1): 39–41 doi: 10.1130/0091-7613(1997)025<0039:MTPVCA>2.3.CO;2
    Fan, M., Dettman, D. L., Song, C. H., et al., 2007. Climatic Variation in the Linxia Basin, NE Plateau, from 13.1 to 4.3 Ma: The Stable Isotope Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247: 313–328 doi: 10.1016/j.palaeo.2006.11.001
    Fang, X. M., Garzione, C., Voo, R. V. D., et al., 2003. Flexural Subsidence by 29 Ma on the NE Edge of Tibet from the Magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210: 545–560 doi: 10.1016/S0012-821X(03)00142-0
    Flower, B. P., 1993. Middle Miocene Ocean-Climate Transition: High-Resolution Oxygen and Carbon Isotopic Records from Deep Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography, 8: 811–843 doi: 10.1029/93PA02196
    Flower, B. P., Kennett, J. P., 1994. The Middle Miocene Climatic Transition: East Antarctic Ice Sheet Development, Deep Ocean Circulation and Global Carbon Cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 537–555 doi: 10.1016/0031-0182(94)90251-8
    Goldsmith, J. R., Graf, D. L., Joensuu, O. I., 1955. The Occurrence of Magnesian Calcites in Nature. Geochimica et Cosmochimica Acta, 7: 212–230 doi: 10.1016/0016-7037(55)90033-8
    Goldsmith, J. R., Graf, D. L., Heard, H. C., 1961. Lattice Constants of the Calcium-Magnesium Carbonates. The American Minerilogist, 46: 453–457 http://pubs.geoscienceworld.org/msa/ammin/article-pdf/46/3-4_Part_1/453/4253314/am-1961-453.pdf
    Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertication by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416: 159–163 doi: 10.1038/416159a
    Guo, Z. T., Peng, S. Z., Hao, Q. Z., 2004. Late Miocene-Pleicene Development of Asian Aridication as Recorded in the Red-Earth Formation in Northern China. Global and Planetary Change, 41: 135–145 doi: 10.1016/j.gloplacha.2004.01.002
    Holbourn, A., Kuhnt, W., Schulz, M., et al., 2005. Impacts of Orbital Forcing and Atmospheric Carbon Dioxide on Miocene Ice-Sheet Expansion. Nature, 438: 483–487 doi: 10.1038/nature04123
    Hough, B. G., Garzione, C. N., Wang, Z., et al., 2011. Stable Isotope Evidence for Topographic Growth and Basin Segmentation: Implications for the Evolution of the NE Tibetan Plateau. Geological Society of America Bulletin, 123: 168–185 doi: 10.1130/B30090.1
    Hui, Z. C., Li, J. J., Xu, H., et al., 2011. Miocene Vegetation and Climatic Changes Reconstructed from a Sporopollen Record of the Tianshui Basin, NE Tibetan Plateau. Palaogeography, Palaeoclimatology, Palaeoecology, 308: 373–382 doi: 10.1016/j.palaeo.2011.05.043
    Itoigawa, J., Yamanoi, T., 1990. Climatic Optimum in the Mid-Neogene of the Japanese Islands. In: Tsuchi, R., ed., Pacific Neogene Events, Their Timing, Nature and Inter-Relationship. University of Tokyo Press, Tokyo. 3–14
    Jiang, H. C., Ding, Z. L., Xiong, S. F., 2007. Magnetostratigraphy of the Neogene Sikouzi Section at Guyuan, Ningxia, China. Paleogeography, Palaeoclimatology, Palaeoecology, 243: 223–234 doi: 10.1016/j.palaeo.2006.07.016
    Jiang, H. C., Ding, Z. L., 2008. A 20 Ma Pollen Record of East-Asian Summer Monsoon Evolution from Guyuan Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 30–38 doi: 10.1016/j.palaeo.2008.04.016
    Jiang, H. C., Ji, J. L., Gao, L., et al., 2008. Cooling-Driven Climate Change at 12-11 Ma: Multiproxy Recoords from a Long Fluviolacustrine Sequence at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 148–158 http://blog.sciencenet.cn/home.php?mod=attachment&id=42069
    Jiang, H. C., Ding, Z. L., 2010. Eolian Grain-Size Signature of the Sikouzi Lacustrine Sediments (C-Hinese Loess Plateau): Implications for Neogene Evolution of the East Asian Winter Monsoon. Geological Society of America, 122: 843–854 doi: 10.1130/B26583.1
    John, C. M., Karner, G. D., Mutti, M., 2004. δ18O and Marion Plateau Backstripping: Combining Two Approaches to Constrain Late Middle Miocene Eustatic Amplitude. Geology, 32: 829–832 doi: 10.1130/G20580.1
    Kent-Corson, M., Ritts, B., Zhuang, G., et al., 2009. Stable Isotopic Constraints on the Tectonic, Topographic, and Climatic Evolution of the Northern Margin of the Tibetan Plateau. Earth Planetary Science Letters, 282: 158–166 doi: 10.1016/j.epsl.2009.03.011
    Kim, S., O'Neil, J. R., 1997. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochimica et Cosmochimica Acta, 61: 3461–3475 doi: 10.1016/S0016-7037(97)00169-5
    Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Glocal Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287: 269–272 doi: 10.1126/science.287.5451.269
    Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 6(23): 811–831 http://core.ac.uk/download/pdf/16748868.pdf
    Li, G. J., Pettke, T., Chen, J., 2011. Increasing Nd isotopic Ratio of Asian Dust Indicates Progressive Uplift of the North Tibetan Plateau since the Middle Miocene. Geology, 39: 199–202 doi: 10.1130/G31734.1
    Li, G. J., Chen, J., Yang, C., 2013. Primary and Secondary Carbonate in Chinese Loess Discriminated by Trace Element Composition. Geochimica et Cosmochimica Acta, 103: 26–35 doi: 10.1016/j.gca.2012.10.049
    Li, H. C., Ku, T. L., 1997. δ13C-δ18C Covariance as a Paleohydrological Indicator for Closed Basin Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 133: 69–80 doi: 10.1016/S0031-0182(96)00153-8
    Li, J. J., Zhang, J., Song, C. H., et al., 2006. Miocene Bahean Stratigraphy in the Longzhong Basin, Northern Central China and Its Implicatiions in Environmental Change. Science in China Series D: Earth Sciences, 49: 1270–1279 http://earth.scichina.com:8080/sciDe/EN/article/downloadArticleFile.do?attachType=PDF&id=307429
    Li, J. J., Fang, X. M., Vander Voo, R., et al., 1997. Late Cenozoic Magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan Sections in the Longzhong Basin, Western China. Geologe & Mijnbouw, 76: 121–134 http://www.researchgate.net/profile/Rob_Van_der_Voo/publication/30844689_Late_Cenozoic_magnetostratigraphy_11_-_0_Ma_of_the_Dongshanding_and_Wangjiashan_sections_in_the_Longzhong_Basin_western_China/links/0912f5102856b6e3bb000000/Late-Cenozoic-magnetostratigraphy-11-0-Ma-of-the-Dongshanding-and-Wangjiashan-sections-in-the-Longzhong-Basin-western-China.pdf
    Lu, H., Wang, X., Li, L., 2010. Aeolian Sediment Evidence that Global Cooling has Driven Late Cenozoic Stepwise Aridification in Asia. Geological Society, London, Special Pubications, 342: 29–44 doi: 10.1144/SP342.4
    Pascual, R., Janreguizar, E. O., 1990. Evolving Climates and Mammal Faunas in Cenozic South America. Journal of Human Evolution, 19: 23–60 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-004724849090011Y&originContentFamily=serial&_origin=article&_ts=1438523719&md5=800a2d0804605e5a6a97e3f6fbdb7f45
    Ma, Y. Z., Li, J. J., Fang, X. M., et al., 1998. Pollen Assemblage in 30.6–5.0 Ma Redbeds of Linxia Regionand Climate Evolution. Chinese Science Bulletin, 43: 301–304 (in Chinese) http://www.researchgate.net/publication/307964448_Pollen_assemblage_in_306-50_Ma_redbeds_of_Linxia_region_and_climate_evolution
    Miao, Y. F., Fang, X. M., Herrmann, M., et al., 2011. Miocene Pollen Record of KC-1 Core in the Qaidam Basin, NE Tibetan Plateau and Implications for Evolution of the East Asian Monsoon. Palaeography, Palaeoclimatology, Palaeoecology, 299: 30–38
    Miller, K. G., Faribanks, R. G., Mountain, G. S., 1987. Tertiary Oxygen Isotope Synthesis, Sea Level History, and Continental Margin Erosion. Paleoceanography, 2: 1–19
    Miller, K. G., Wright, J. D., Fairbanks, R. G., 1991. Unlocking the Icehouse: Oligocene-Miocene Oxygen Isotopes, Eustasy and Margin Erosion. Journal of Geophysical Reseach, 96: 6829–6848 http://www.researchgate.net/profile/Kenneth_Miller13/publication/248793391_Unlocking_the_Ice_House_Oligocene-Miocene_oxygen_isotopes_eustasy_and_margin_erosion/links/02e7e52cf12d3d40f8000000.pdf
    Miller, K. G., Mountain, G. S., The Leg 150 Shipboard Party, Members of the New Jersey Coastal Plain Drilling Project, 1996. Drilling and Dating New Jersey Oligocene-Miocene Sequences: Ice Volume, Global Sea Level, and Exxon Records. Science, 271: 1092–1095 http://www.researchgate.net/profile/Yoshiki_Saito/publication/234057810_Drilling_and_dating_New_Jersey_Oligocene-Miocene_sequences_Ice_volume_global_sea_level_and_Exxon_records/links/02bfe50eae24db465b000000
    Mudie, P. J., Helgason, J., 1983. Palynological Evidence for Miocene Climatic Cooling in Eastern Iceland about 9.8 Myr Ago. Nature, 303: 689–692 http://www.researchgate.net/profile/PJ_Mudie/publication/232771226_Palynological_evidence_for_Miocene_climatic_cooling_in_eastern_Iceland_about_9.8_Myr_ago/links/550845d30cf26ff55f80bdbb.pdf
    Ramsein, G., Fluteau, F., Besse, J., et al., 1997. Effect of Orogeny: Plate Motion and Land-Sea Distribution on Eurasian Climate Change over the Past 30 Million Years. Nature, 386: 788–795 http://www.nature.com/articles/386788a0.pdf
    Retallack, G. J., 1992. Middle Miocene Fossil Plants from Fort Ternan (Kenya) and Evolution of African Grasslands. Paleobiology, 18: 383–400
    Robert, C., Sterin, R., Acquaviva, R., 1986. Cenozoic Evolution and Significance of Clay Associations in the New Zealand Region of the Southwest Pacific, Leg 90. In: Kunnett, J. P., von der Borch, C. C., eds., Init. Rep. DSDP Washington D. C. . 90: 1225–1238
    Rozankski, K., Araguas-Araguas, L., Gonfiantini, R., 1993. Isotopic Patterns in Modern Global Precipitation, In: Swart, P., Mckenzie, J. A., Lohmann, K. C., et al., eds., Climate Change in Continental Isotopic Records. Geophys. Monogr. 78, Am. Geophys. Union, Washington D.C. . 1–36
    Ruddiman, W. F., 2002. Earth's Climate: Past and Future. W. H. Freman and Company, New York. 1–465 http://wfu.edu/~silmanmr/bio377/assignments/Readings/Climate%20Readings/ruddiman_2e_ch01.figures.pdf
    Saito, T., Yamanoi, T., Morohoshi, F., et al., 1995. Discovery of Mangrove Plant Pollen from the "Shukunohora Sandstone facies" Keyo Formation, Mizunami Group (Miocene), Gifu Prefecture, Japan. The Journal of the Geological Society of Japan, 101(9): 747–749 (in Japanese) http://www.researchgate.net/publication/271057521_Discovery_of_mangrove_plant_pollen_from_the_Shukunohora_Sandstone_Facies_Akeyo_Formation_Mizunami_Group_Miocene_Gifu_Prefecture_Japan
    Savin, S. M., Douglas, R. G., Stehli, F. G., 1975. Tertiary Marine Paleotemperatures. Geological Society of America, 86: 1499–1510 http://bulletin.geoscienceworld.org/content/86/11/1499.abstract
    Shackleton, N. J., Kennett, J. P., 1975. Paleotemperature History of the Cenzoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Project, 29: 743–755 http://www.deepseadrilling.org/29/volume/dsdp29_17.pdf
    Singh, R. K., Gupta, A. K., 2005. Systematic Decline in Benthic Foraminiferal Species Diversity Linked to Productivity Increases over the Last 26 Ma in the Indian Ocean. Journal of Foraminiferal Reseach, 35(3): 219–227 http://www.onacademic.com/detail/journal_1000038088558910_9b24.html
    Stein, R., Robert, C., 1986. Siliciclastic Sediments at Sites 588, 590 and 591: Neogene and Paleoggene Evolution in the Southwest Pacific and Australian Climate. In: Kennett, J. P., von der Borch. C. C. eds., Initial Reports of the Deep Sea Drilling Project, 90: 1437–1455
    Talbot, M., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemistry Geology, 80: 261–279 http://www.researchgate.net/publictopics.PublicPostFileLoader.html?id=54f44fd6d685cc6b168b45a7&key=823bb819-6040-45f3-8403-303fff3153cd
    Wang, Y., Deng, T., 2005. A 25 m. y. Isotopic Record of Paleodiet and Environmental Change from Fossil Mammals and Paleosols from the NE Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 236: 322–338
    Wang, W. M., Saito, T., Nakagawa, T., 2001. Palynostratigraphy and Climatic Implications of Neogene Deposits in the Himi Area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology, 117: 281–295 http://www.onacademic.com/detail/journal_1000035104958910_dbf7.html
    Webb, S. D., 1997. A History of Savanna Vertebrates in the New World. Part I: North America. Annual Review of Ecology Systematics, 8: 355–380
    Wei, G. J., Li, X. H., Liu, Y., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 21: PA4214, doi: 10.1029/2006PA001300
    White, J. M., Ager, T. A., Adam, D. P., et al., 1997. An 18 Million Year Record of Vegetation and Climate Change in Northwestern Canada and Alaska: Tectonic and Global Climatic Correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130: 293–306 http://www.irgrid.ac.cn/handle/1471x/820410
    Wolfe, J. A., 1980. Tertiary Climates and Floristic Relationships at High Latitudes in the Northern Hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 30: 313–323 http://www.onacademic.com/detail/journal_1000035326244810_875a.html
    Wolfe, J. A. 1985. Distribuion of Major Vegetational Types during the Tertiary. In: Sundquist, E. T., Broecker, W. S. eds., The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Persent. Geophys. Monogr. 32. AGU, Washington D.C. . 357–375
    Yang, P., Sun, Z. C., Li, D. M., et al., 2000. Ostracoda Extinction and Explosion Events of the Mesozoic-Cenozoic in Qaidam Basin, Northwest China. Journal of Palaeogeograhy, 2(3): 69–74 (In Chinese with English Abstract)
    Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberratios in Global Climate 65 Ma to Present. Science, 292: 686–693 http://www.researchgate.net/publication/313550406_trends_rhythms_and_aberrations_in_global_climate_65ma_to_present
    Zachos, J. C., Gerald, R. D., Richard, E. Z., 2008. An Early Cenozoic Perspective on Greenhouse: Warming and Carbon-Cycle Dynamics. Nature, 451(17): 279–283 http://eesc.ldeo.columbia.edu/courses/w4937/Readings/Zachos_Dickens_Zeebe_2008.pdf
    Zhai, R. J., 1959. On a Collection of Miocene Mammals from Eastern Gansu. Pleovertebrata et Paleoanthropologia, 1: 139–140 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GJZD195903008.htm
    Zhang, J., Li, J. J., Song, C. H., et al., 2013. Paleomagnetic Ages of Miocene Fluvio-Lacustrine Sediments in the Tianshui Basin, Western China. Journal of Asian Earth Sciences, 62: 341–348 http://www.onacademic.com/detail/journal_1000036180243710_5438.html
    Zhuang, G. S., Hourigan, J. K., Koch, P. L., et al., 2011. Isotopic Constraints on Intensified Aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 312: 152–163 http://www.es.ucsc.edu/~pkoch/pdfs/Koch%20papers/2011/Zhuang%20et%2011%20EPSL%20312-152.pdf
    Zou, H. B., McKeegan, K. D., Xu, X. S., et al., 2004. Fe-Al-rich Tridymite-Hercynite Xenoliths with Positive Cerium Anomalies: Preserved Lateritic Paleosols and Implications for Miocene Climate. Chemical Geology, 207: 101–116 http://sims.ess.ucla.edu/PDF/Zou_McKeegan_2004_Chemge.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(985) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return