Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 2
Apr 2014
Turn off MathJax
Article Contents
Qian Yu, Yanxin Wang, Rui Ma, Chunli Su, Ya Wu, Junxia Li. Monitoring and Modeling the Effects of Groundwater Flow on Arsenic Transport in Datong Basin. Journal of Earth Science, 2014, 25(2): 386-396. doi: 10.1007/s12583-014-0421-y
Citation: Qian Yu, Yanxin Wang, Rui Ma, Chunli Su, Ya Wu, Junxia Li. Monitoring and Modeling the Effects of Groundwater Flow on Arsenic Transport in Datong Basin. Journal of Earth Science, 2014, 25(2): 386-396. doi: 10.1007/s12583-014-0421-y

Monitoring and Modeling the Effects of Groundwater Flow on Arsenic Transport in Datong Basin

doi: 10.1007/s12583-014-0421-y
More Information
  • Corresponding author: Yanxin Wang, yx.wang@cug.edu.cn
  • Received Date: 21 Oct 2013
  • Accepted Date: 27 Feb 2014
  • Publish Date: 01 Apr 2014
  • Although arsenic-contaminated groundwater in the Datong Basin has been studied for more than 10 years, little has been known about the complex patterns of solute transport in the aquifer systems. Field monitoring and transient 3D unsaturated groundwater flow modeling studies were carried out on the riparian zone of the Sanggan River at the Datong Basin, northern China, to better understand the effects of groundwater flow on As mobilization and transport. The results indicate that irrigation is the primary factor in determining the groundwater flow paths. Irrigation can not only increase groundwater level and reduce horizontal groundwater velocity and thereby accelerate vertical and horizontal groundwater exchange among sand, silt and clay formations, but also change the HS concentration, redox conditions of the shallow groundwater. Results of net groundwater flux estimation suggest that vertical infiltration is likely the primary control of As transport in the vadose zone, while horizontal water exchange is dominant in controlling As migration within the sand aquifers. Recharge water, including irrigation return water and flushed saltwater, travels downward from the ground surface to the aquifer and then nearly horizontally across the sand aquifer. The maximum value of As enriched in the riparian zone is roughly estimated to be 1 706.2 mg·d−1 for a horizontal water exchange of 8.98 m3·d−1 close to the river and an As concentration of 190 μg·L−1.

     

  • loading
  • Aziz, Z., van Geen, A., Stute, M., et al., 2008. Impact of Local Recharge on Arsenic Concentrations in Shallow Aquifers Inferred from the Electromagnetic Conductivity of Soils in Araihazar, Bangladesh. Water Resources Research, 44(7): W07416, doi: 10.1029/2007/WR006000
    Benner, S. G., Polizzotto, M. L., Kocar, B. D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072–3087, doi: 10.1016/j.apgeochem.2008.06.013
    Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2): 413–425, doi: 10.1016/j.scitotenv.2006.09.010
    BGS and DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.
    Charlet, L., Polya, D. A., 2006. Arsenic in Shallow, Reducing Groundwaters in Southern Aisa: An Environmental Health Disaster. Elements, 2(2): 91–96 doi: 10.2113/gselements.2.2.91
    Dong, S. G., Tang, Z. H., Liu, B. W., et al., 2008. Numerical Simulation for the Groundwater in Datong Basin and Evaluation of the Optimization of Water Resources. Geotechnical Investigation & Surveying, 3: 30–35 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200803011.htm
    Duan, M. Y., Xie, Z. M., Wang, Y. X., et al., 2009. Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments under Different Conditions of Microbial Activity and Carbon Source. Environmental Geology, 57(5): 997–1003, doi: 10.1007/s00254-008-1384-z
    Guo, H. M., Wang, Y. X., Shpeizer, G. M., et al., 2003. Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. Journal of Environmental Science and Health Part A-Toxic/Hazard Substances & Environmental Engineering, 38(11): 2565–2580, doi: 10.1018/ESE-120024447
    Guo, H. M., Wang, Y. X., 2004. Hydrogeochemical Processes in Shallow Quaternary Aquifers from the Northern Part of the Datong Basin, China. Applied Geochemistry, 19(1): 19–27 doi: 10.1016/S0883-2927(03)00128-8
    Guo, H. M., Zhang, Y., Jia, Y. F., et al., 2013. Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 135: 130–140 doi: 10.1016/j.gexplo.2012.06.010
    Farooqi, A., Masuda, H., Kusakabe, M., et al., 2007. Distribution of Highly Arsenic and Fluoride Contaminated Groundwater from East Punjab, Pakistan, and the Controlling Role of Anthropogenic Pollutes in the Natural Hydrological Cycle. Geochemical Journal, 41(4): 213–234 doi: 10.2343/geochemj.41.213
    Fetter, C. W., 2001. Applied Hydrogeology. Prentice-Hall, New Jersey. 75–85
    Han, S., Zhang, F., Zhang, H., et al., 2013. Spatial and Temporal Patterns of Groundwater Arsenic in Shallow and Deep Groundwater of Yinchuan Plain, China. Journal of Geochemical Exploration, 135: 71–78, doi:org/ 10.1016/j.gexplo.2012.11.005
    Harvey, C. E., Ashfaque, K. N., Yu, W., et al., 2006. Groundwater Dynamics and Arsenic Contamination in Bangladesh. Chemical Geology, 228(1): 112–136, doi: 10.1016/j.chemgeo.2005.11.025
    Horneman, A., van Geen, A., Kent, D. V., et al., 2004. Arsnenic Mobilization in Bangladesh Groundwater Decoupled from Dissolution of Iron Oxyhydroxides, Part 1: Evidence from Borehole Cuttings. Geochimica et Cosmochima Acta, 68: 3459–3473 doi: 10.1016/j.gca.2004.01.026
    Islam, F. S., Gault, A. G., Boothman, C., et al., 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, 430(6995): 68–71, doi: 10.1038/nature02638
    Kirk, M. F., Holm, T. R., Park, J., et al., 2004. Bacterial Sulfate Reduction Limits Natural Arsenic Contamination in Groundwater. Geology, 32(1): 953–956, doi: 1130/G20842.1
    Kinniburgh, D. G., Smedley, P. L., 2001. Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G., Smedley, P. L., eds., Final Report BGS Technical Report WC/00/19, British Geological Survey, Keyworth, U.K.
    Klump, S., Kipfer, R., Cirpka, O. A., et al., 2006. Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed Using Noble Gases and Tritium. Environmental Science & Technology, 40(1): 243–250, doi: 10.1012/es051284w
    Konikow, L. F., Neuzil, C. E., 2007. A Method to Estimate Groundwater Depletion from Confining Layers. Water Resources Research, 43(7): W07417, doi: 10.1029/2006WR005597
    Li, J., Wang, Z. H., Cheng, X. T., et al., 2005. Investigation of the Epidemiology of Endemic Arsenism in Ying County of Shanxi Province and the Content Relationship between Water Fluoride and Water Arsenic in Aquatic Environment. Chinese Journal of Endemiology, 24(2): 183–185 (in Chinese with English Abstract) http://europepmc.org/abstract/CBA/572099
    Lowers, H. A., Breit, G. N., Foster, A. L., et al., 2007. Arsenic Incorporation into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh. Geochemica et Cosmochimica Acta, 71(11): 2699–2717, doi: 10.1016/j.gca.2007.03.022
    Mandal, B. K., Chowdhury, T. R., Samanta, G., et al., 1996. Arsenic in Groundwater in Seven Districts of West Bengal, India: the Biggest Arsenic Calamity in the World. Current Science, 70(11): 976–986
    Masuda, H., Mitamura, M., Farooqi, A. M., et al., 2010. Geologic Structure and Geochemical Characteristics of Sediment of Fluoride and Arsenic Contaminated Groundwater Aquifer in Kalalanwala and Its Vicinity, Punjab, Pakistan. Geochemical Journal, 44(6): 489–505 doi: 10.2343/geochemj.1.0098
    McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., et al., 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255–1293, doi: 10.1016/j.apgeochem.2004.02.001
    McDonald, M. G., Harbaugh, A. W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. USGS, Techniques of Water-Resources Investigations 34 (Book 6), 586 (Chapter A1)
    Nakaya, S., Natsume, H., Masuda, H., et al., 2011. Effect of Groundwater Flow on Forming Arsenic Contaminated Groundwater in Sonargaon, Bangladesh. Journal of Hydrology, 409(3–4): 724–736, doi: 10.1016/j.jhydrol.2011.09.006
    Nickson, R. T., McArthur, J. M., Burgess, W. G., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338–338 doi: 10.1038/26387
    Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403–413 doi: 10.1016/S0883-2927(99)00086-4
    Pei, H. H., Liang, S. X., Ning, L. Y., 2005. A Discussion of the Enrichment and Formation of Arsenic in Groundwater in Datong Basin. Hydrogeology & Engineering Geology, 32(4): 65–69 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200504017.htm
    Peters, S. C., Blum, J. D., 2003. The Source and Transport of Arsenic in a Bedrock Aquifer, New Hampshire, USA. Applied Geochemistry, 18(11): 1773–1787, doi: 10.1016/S0883-2927(03)00109-4
    Postma, D., Larsen, F., Hue, N. T. M., et al., 2007. Arsenic in Groundwater of the Red River Flood Plain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. Geochemica et Cosmochimica Acta, 71(21): 5054–5071, doi: 10.1016/j.gca.2007.08.020
    Schreiber, M. E., Simo, J. A., Freiberg, P. G., 2000. Stratigraphic and Geochemical Controls on Naturally Occurring Arsenic in Groundwater, Eastern Wisconsin, USA. Hydrogeology Journal, 8(2): 161–176, doi: 10.1007/PL00021535
    Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517–568 doi: 10.1016/S0883-2927(02)00018-5
    Smedley, P. L., Zhang, M., Zhang, G., et al., 2003. Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18(9): 1453–1477, doi: 10.1016/S0883-2927(03)00062-3
    Smith, A. H., Lingas, E. Q., Rahamn, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. of the World Health Organization, 78(9): 1093–1103, doi:ogr/ 10.1590/S0042-96862000000900005
    Stigter, T. Y., Carvalho Dill, A. M. M., Ribeiro, L., et al., 2006. Impact of the Shift from Groundwater to Surface Water Irrigation on Aquifer Dynamics and Hydrochemistry in A Semi-Arid Region in the South of Portugal. Agricultural Water Management, 85(1–2): 121–132, 10.1016/j. agwat. 2006.04.004 http://www.sciencedirect.com/science/article/pii/S0378377406001193
    Stute, M., Zheng, Y., Schlosser, P., et al., 2007. Hydrological Control of As Concentrations in Bangladesh Groundwater. Water Resources Research, 43(9), doi: 10.1029/2005WR004499
    Thangarajan, M., Linn, F., Uhl, V., et al., 1999. Modeling An Inland Delta Aquifer System to Evolve Pre-Development Management Schemes: A Case Study Upper Thamalakane River Valley, Botswana, Southern Africa. Environmental Geology, 38(4): 285–295 doi: 10.1007/s002540050426
    ven Geen, A., Zheng, Y., Stute, M., et al., 2003. Comments on "Arsenic Mobility and Groundwater Extraction in Bangladesh" (Ⅱ). Science, 300(5619): 584c–584c, doi: 10.1126/science.1081057
    Wang, Y. X., Shpeyzer, G., 2000. Hydrogeochemistry of Mineral Waters from Rrift Systems on the East Asia Continent: Case Studies in Shanxi and Baikal. China Enviromental Science Press, Beijing (in Chinese with English Abstract)
    Wang, Y. X., Shavartsev, S. L., Su, C. L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641–649, doi: 10.1016/j.apgeochem.2008.12.015
    Xie, X. J., Wang, Y. X., Su, C. L., et al., 2008. Arsenic Mobilization in Shallow Aquifers of Datong Basin: Hydrochemical and Mineralogical Evidences. Journal of Geochemical Exploration, 98(3): 107–115, doi: 10.1016/j.gexplo.2008.01.002
    Xie, X. J., Ellis, A., Wang, Y. X., et al., 2009. Geochemsitry of Redox-Sensitive Elements and Sulfur Isotopes in the Haigh Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 407(12): 3823–3835, doi: 10.1016/j.scitotenv.2009.01.041
    Xie, X. J., Wang, Y. X., Li, J. X., et al., 2012a. Occurrence of High Arsenic Groundwater at the Datong and Huhhot Basin, Northern China: Hydrochemical and Isotopic Investigation. Fresenius Environmental Bulletin, 21(4): 819–829
    Xie, X. J., Wang, Y. X., Su, C. L., et al., 2012b. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424: 37–47, doi: 10.1016/j.jhydrol.2011.12.017
    Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 115(4): 636–642, doi: 10.1289/ehp.9268
    Zhang, J. G., Zhao, H. J., 1987. Water Resource Management in Shanxi Province. Ground Water, 4: 232–234 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(414) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return