Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 2
Apr 2014
Turn off MathJax
Article Contents
Xinzhuan Guo, Akira Takasu, Yongjiang Liu, Weimin Li. Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China. Journal of Earth Science, 2014, 25(2): 207-223. doi: 10.1007/s12583-014-0428-4
Citation: Xinzhuan Guo, Akira Takasu, Yongjiang Liu, Weimin Li. Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China. Journal of Earth Science, 2014, 25(2): 207-223. doi: 10.1007/s12583-014-0428-4

Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China

doi: 10.1007/s12583-014-0428-4
More Information
  • Al-rich metapelites from the Mashan khondalite series are characterized by the assemblage Spl+Grt+Sil+Crd+Bt+Pl (An72)+Kfs+Quartz+graphite. Large amounts of spinel+quartz assemblages occur as inclusions in garnet and prismatic sillimanite in the Al-rich metapelites of the Mashan complex, NE China. The chemical composition of spinel is characterized by Zn-rich (XZn=0.33–0.40. XZn=Zn/Zn+Mg+Fe*) (Fe*=Fe2++Fe3+) and Fe3+ rich (up to 0.31 p.f.u.). The characteristic chemical composition and the mineral association indicated that the formation of spinel and quartz assemblage may be due to the breakdown of Zn-rich staurolite. The geothermobarometers studies show that the peak temperature of the Mashan complex is around 820 ℃ and the peak pressures is 8.0 kbar. The Mashan complex shows a typical orogen style P-T path.

     

  • loading
  • Ackermand, D., Herd, R. K., Reinhardt, M., et al., 1987. Sapphirine Parageneses From the Caraiba Complex, Bahai, Brazil: the Influence of Fe2+-Fe3+ Distribution on the Stability of Sapphirine in Natural Assemblages. Journal of Metamorphic Geology, 5: 323–339 doi: 10.1111/j.1525-1314.1987.tb00388.x
    Albee, A., 1972. Metamorphism of Pelitic Rocks: Reaction Relations of Chloritoid and Staurolite. Bulletin Geological Society of America, 83: 3249–3268 doi: 10.1130/0016-7606(1972)83[3249:MOPSRR]2.0.CO;2
    Atkin, B., 1978. Hercynite as a Breakdown Product of Staurolite from within the Aureole of the Ardara Pluton, Co, Donegal, Eire. Mineralogical Magazine, 42: 237–239 doi: 10.1180/minmag.1978.042.322.10
    Barbosa, J., Nicollet, C., Leite, C., et al., 2006. Hercynite-Quartz-Bearing Granulites from Brejões Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 92: 537–556 doi: 10.1016/j.lithos.2006.03.064
    Bhattacharya, A., Mohanty, L., Maji, A., et al., 1992. Non-Ideal Mixing in the Phlogopite-Annite Binary: Constraints from Experimental Data on Mg-Fe Partitioning and Formation of the Biotite-Garnet Geothermometer. Contributions to Mineralogy and Petrology, 111: 87–93 doi: 10.1007/BF00296580
    Bose, S., Fukuoka, M., Sengupta, P., et al., 2000. Evolution of High-Mg-Al Granulites from Sunkarametta, Eastern Ghats, India: Evidence for a Lower Crustal Heating-Cooling Trajectory. Journal of Metamorphic Geology, 18: 223–240 doi: 10.1046/j.1525-1314.2000.00253.x
    Dasgupta, S., Sengupta, P., Ehl, J., et al., 1995. Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India: Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 36: 435–461 doi: 10.1093/petrology/36.2.435
    Dietforst, E., 1980. Biotite Breakdown and the Formation of Gahnite in Metapelitic Rocks from Kemio, Southwest Finland. Contributions to Mineralogy and Petrology, 75: 327–337 doi: 10.1007%2FBF00374717.pdf
    Ellis, D., Sheraton, J., England, R., et al., 1980. Osumilit-Sapphirine-Quartz Granulites from Enderby Land, Antarctica-mineral Assemblages and Reactions. Contributions to Mineralogy and Petrology, 72: 123–143 doi: 10.1007/BF00399473
    Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. Journal of Geology, 97: 435–450 doi: 10.1086/629321
    Fuhrman, M., Lindsley, D., 1988. Ternary Feldspar Modeling and Thermometry. American Mineralogist, 73: 201–215 http://ci.nii.ac.jp/naid/80003853364
    Griffen, D., Ribbe, P., 1973. The Crystal Chemistry of Staurolite. American Journal of Science, 273-A: 479–495 http://earth.geology.yale.edu/~ajs/1973/ajs_273A_11.pdf/479.pdf
    Harley, S. L., 1985. Garnet-Orthopyroxene Bearing Granlites from Enderby Land, Antarctica: Metamorphic Pressure-Temperature-Time Evolution of the Archaean Napier complex. Journal of Petrology, 26: 819–856 doi: 10.1093/petrology/26.4.819
    Harley, S.L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138: 81–107 doi: 10.1144/GSL.SP.1996.138.01.06
    Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26: 125–154 doi: 10.1111/j.1525-1314.2008.00765.x
    Harris, N. B. W., Holland, T. J. B., 1984. The Significance of Cordierite-Hypersthene Assemblages from the Beitbridge Region of the Central Limpopo Belt: Evidence for Rapid Decompression in the Archean? American Mineralogist, 69: 1036–1049 http://ci.nii.ac.jp/naid/10013553368
    Henry, D., Guidotti, C., Thomson, J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanism. American Mineralogist, 90: 316–328 doi: 10.2138/am.2005.1498
    Hensen, B. J., 1986. Theoretical Phase Relations Involving Garnet and Cordierite Revisited: the Influence of Oxygen Fugacity on the Stability of Sapphirine and Spinel in the System Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology, 92: 362–367 doi: 10.1007/BF00572165
    Hodges, K., Spear, F., 1982. Geothermometry, Geobarometry, and the Al2SiO5 Triple Point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67: 1118–1134
    Holland, T., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16: 309–343 http://www.uio.no/studier/emner/matnat/fys/FYS-GEO4520/h09/undervisningsmateriale/Holland_and_powell.pdf
    Jiang, J., 1992. Peak Regional Metamorphism of the Khondalite Series of the Mashan Complex and Its Evolution. Acta Petrologica et Mineralogica, 11: 97–108 (in Chinese with English Abstract) http://www.researchgate.net/publication/309476282_Peak_regional_metamorphism_of_the_khondalite_series_of_Mashan_Group_and_its_evolution
    Kelsey, D., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13: 1–29 doi: 10.1016/j.gr.2007.06.001
    Kretz, R., 1983. Symbols for Rock-Forming Minerals. American Mineralogist, 68: 277–279 http://blog.sciencenet.cn/upload/blog/file/2010/12/2010129173752417799.pdf
    Morimoto, T., Santosh, M., Tsunogae, T., et al., 2004. Spinel+Quartz Association from the Kerala Khondalites, Southern India: Evidence for Ultrahigh-Temperature Metamorphism. Journal of Mineralogical and Petrological Sciences, 99: 257–278 doi: 10.2465/jmps.99.257
    Nichols, G. T., Berry, R. F., Green, D. H., 1992. Internally Consistent Gahnitic Spinel-Cordierite-Garnet Equilibria in the Fmashzn System: Geothermobarometry and Applications. Contributions to Mineralogy and Petrology, 111: 362–377 doi: 10.1007/BF00311197
    Pattison, D., Chacko, T., Farquhar, J., et al., 2003. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44: 867–900 doi: 10.1093/petrology/44.5.867
    Perchuk, L., Gerya, T., Nozhkin, A., 1989. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 7: 599–617 doi: 10.1111/j.1525-1314.1989.tb00621.x
    Powell, R., Sandiford, M., 1988. Sapphirine and Spinel Phase Relationships in the System FeO-MgO-Al2O3-SiO2-TiO2-O2 in the Presence of Quartz and Hypersthene. Contributions to Mineralogy and Petrology, 98: 64–71 doi: 10.1007/BF00371910
    Sandiford, M., 1985. The Metamorphic Evolution of Granulites at Fyfe Hills: Implications for Archaean Crustal Thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology, 3: 155–178 doi: 10.1111/j.1525-1314.1985.tb00312.x
    Santosh, M., Wada, H., 1993. Microscale Isotopic Zonation in Graphite Crystals: Evidence for Channeled CO2 Influx in Granulites. Earth Planet Science Letter, 119: 19–26 doi: 10.1016/0012-821X(93)90003-R
    Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 10(3–4): 256–266 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1342937X06001924&originContentFamily=serial&_origin=article&_ts=1490160047&md5=1c202ceeab2a4c2c1eef246cdf44fd54
    Sarkar, S., Dasgupta, S., Fukuoka, M., 2003. Petrological Evolution of a Suite of Spinel Granulites from Vizianagram, Eastern Ghats Belt, India, and Genesis of Sapphirine-Bearing Assemblages. Journal of Metamorphic Geology, 21: 899–913 doi: 10.1046/j.1525-1314.2003.00490.x
    Sato, K., Santosh, M., Tsunogae, T., 2009. A Petrologic and Laser Raman Spectroscopic Study of Sapphirine-Spinel-Quartz-Mg-Staurolite Inclusions in Garnet from Kumiloothu, Southern India: Implications for Extreme Metamorphism in a Collisional Orogeny. Journal of Geodynamics, 47: 107–118 doi: 10.1016/j.jog.2008.07.003
    Schumacher, J., 1985. Nigerite "Lamellae" in Zn-Rich Spinel from the Falun Mine, Falun, Sweden. Terra Cognita, 5: 227
    Sengör, A., Natal'in B., Burtman, V., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299–307 doi: 10.1038/364299a0
    Sengupta, P., Sen, J., Dasgupta, S., et al., 1999. Ultrahigh Temperature Metamorphism of Metapelitic Granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic Correlation. Journal of Petrology, 40: 1065–1087 doi: 10.1093/petroj/40.7.1065
    Shimizu, H., Tsunogae, T., Santosh, M., 2009. Spinel+Quartz Assemblage in Granulites from the Achankovil Shear Zone, Southern India: Implications for Ultrahigh-Temperature Metamorphism. Journal of Asian Earth Sciences, 36: 209–222 doi: 10.1016/j.jseaes.2009.06.005
    Spry, P., Scott, S., 1986. Zincian Spinel and Staurolite as Guides to Ore in the Appalachians and Scandinavian Caledonides. Canadian Mineralogist, 24: 147–163 http://www.researchgate.net/profile/Paul_Spry2/publication/216831242_Zincian_spinel_and_staurolite_as_guides_to_ore_in_the_Appalachians_and_Scandinavian_Caledonides/links/545d39960cf27487b44d4c41/Zincian-spinel-and-staurolite-as-guides-to-ore-in-the-Appalachians-and-Scandinavian-Caledonides
    Stoddard, E., 1979. Zinc-Rich Hercynite in High-Grade Metamorphic Rocks: A Product of the Dehydration of Staurolite. American Mineralogist, 64: 736–741 http://www.minsocam.org/ammin/AM64/AM64_736.pdf
    Tsunogae, T., van Reenen, D., 2006. Corundum Plus Quartz and Mg-Staurolite Bearing Granulite from the Limpopo Belt, Southern Africa: Implications for a P-T Path. Lithos, 92: 576–587 doi: 10.1016/j.lithos.2006.03.052
    Tuccillo, M., Metzger, K., Essene E., et al., 1992. Thermobarometry, Geochronology and the Interpretation of P-T-t Data in the Britt Domain, Ontario Grenville Orogen, Canada. Journal of Petrology, 33: 1225–1259 doi: 10.1093/petrology/33.6.1225
    Waters, D., 1991. Hercynite-Quartz Granulites: Phase Relations, and Implications for Crustal Processes. European Journal of Mineralogy, 3: 367–386 doi: 10.1127/ejm/3/2/0367
    Wilde, S., Helen, L., Dorsett, B., et al., 1999. Geological Setting and Controls on the Development of Graphite, Sillimanite and Phosphate Mineralization within the Jiamusi Massif: An Exotic Fragment of Gondwanaland Located in North-Eastern China? Gondwana Research, 2: 21–46 doi: 10.1016/S1342-937X(05)70125-8
    Wilde, S., Wu, F., 2001. Timing of Granite Emplacement in the Central Asian Orogenic Belt of Northeastern China. Gondwana Research, 4: 823–824 doi: 10.1016/S1342-937X(05)70609-2
    Wilde, S., Wu, F., Zhang, X., 2003. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif. Precambrian Research, 122: 311–327 doi: 10.1016/S0301-9268(02)00217-6
    Wilde, S., Zhang, X., Wu, F., 2000. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 328: 115–130 doi: 10.1016/S0040-1951(00)00180-3
    Wu, F., Yang, J., Lo, C., et al., 2007. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 16: 156–172 doi: 10.1111/j.1440-1738.2007.00564.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(12)

    Article Metrics

    Article views(734) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return