Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 3
Jun 2014
Turn off MathJax
Article Contents
Bo Kang, Xinong Xie, Tao Cui. Numerical Approach for Ahermal History Aodelling in Multi-Episodic Rifting Basins. Journal of Earth Science, 2014, 25(3): 519-528. doi: 10.1007/s12583-014-0436-4
Citation: Bo Kang, Xinong Xie, Tao Cui. Numerical Approach for Ahermal History Aodelling in Multi-Episodic Rifting Basins. Journal of Earth Science, 2014, 25(3): 519-528. doi: 10.1007/s12583-014-0436-4

Numerical Approach for Ahermal History Aodelling in Multi-Episodic Rifting Basins

doi: 10.1007/s12583-014-0436-4
More Information
  • Corresponding author: Xinong Xie, xnxie@cug.edu.cn
  • Received Date: 23 Mar 2013
  • Accepted Date: 27 Jun 2013
  • Publish Date: 01 Jun 2014
  • Pre-existing models for thermal history modelling have shown deficiency in explicit algorithms to establish the quantitative relationship between maturity indices and thermal gradients in some sedimentary basins that experienced multi-episodic rifting evolution. In this study, a forward and inverse combination model (FICM) is proposed to estimate the vitrinite reflectance (Ro) and thermal gradients. The forward module is used to calculate Ro values. It couples the EASY%Ro model with burial history reconstruction with consideration of thermal gradient variations during basin evolution. The inverse module reconstructs histoical thermal gradients by calibrating cmputed Ro against measured Ro data. The time-temperature series is a necessary input for both forward and inverse modules. Sample density is a profound factor influencing the accuracy of modelling results. In order to obtain satisfying outputs, a sufficient sample density is required. Thermal gradients are assumed to vary linearly between two given samples. Modelling results of case studies indicate that the sensitivity of heating time to Ro evlution is differnt with thermal gradients depending on geolgoical setting. Three difffernt districts, which include the time-sensitive area, the temperature-sensitive area and the non-sensitive area, can be recognized on the the relationship map among Ro variations, heating time and geothermal gradients. This model can be applied to reconstruct the thermal history and maturation evolution in a basin that has undergone complex multi-episodic rifting.

     

  • loading
  • Barker, C. E., Pawlewicz, M. J., 1986. The Correlation of Vitrinite Reflectance with Maximum Temperature in Humic Organic Matter. In: Buntebarth, G., Stegena, L., eds., Paleogeothermics. Lecture Notes in Earth Sciences, Berlin. 5: 79–93
    Beha, A., Thomsen, R. O., Littke, R., 2008. A Rapid Method of Quantifying the Resolution Limits of Heat Flow Estimates in Basin Models. Journal of Petroleum Geology, 31(2): 167–178, doi: 10.1111/j.1747-5457.2008.00414.x
    Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochemica Cosmochimica Acta, 53: 2649–2657, doi: 10.1016/0016-7037(89)90136-1
    Carr, A. D., 1999. A Vitrinite Reflectance Kinetic Model Incorporating Overpressure Retardation. Marine and Petroleum Geology, 16(4): 355–377, doi: 10.1016/S0264-8172(98)00075-0
    Ding, R. X., Wang, W., 2013. Paleotopographic Reconstruction on the Basis of Low-Temperature Thermochronological Thermal History Modelling. Journal of Earth Science, 24(4): 652–656 doi: 10.1007/s12583-013-0357-7
    Falvey, D. A., 1974. The Development of Continental Margins in Plate Tectonic Theory. Journal of Association of Petroleumand Explosives Administration, 14: 95–106 http://www.onacademic.com/detail/journal_1000040445259910_d6f3.html
    Fjeldskaar, W., Grunnaleite, I., Zweigel, J., et al., 2009. Modelled Palaeo-Temperature on Voring, Offshore Mid-Norway—The Effect of the Lower Crustal Body. Tectonophysics, 474(3–4): 544–558, doi: 10.1016/j.tecto.2009.04.036
    Galushkin, Y., Simonenkova, O., Lopatin, N., 1999. Thermal and Maturation Modelling of the Urengoy Field, West Siberian Basin: Some Special Considerations in Basin Modeling. AAPG Bulletin, 83(12): 1965–1979
    Hunt, J. M., Lewan, M. D., Hennet, R. J., 1991. Modelling Oil Generation with Time-Temperature Index Graphs Based on the Arrhenius Equation. AAPG Bulletin, 75(4): 795–807
    Huvaz, O., Karahanoglu, N., Ediger, V., 2007. The Thermal Gradient History of the Thrace Basin, NW Turkey: Correlation with Basin Evolution Processes. Journal of Petroleum Geology, 30(1): 3–23, doi: 10.1111/j.1747-5457.2007.00003.x
    Huvaz, O., Thomsen, R. O., Noeth, S., 2005. A Method for Analyzing Geothermal Gradient Histories Using the Statistical Assessment of Uncertainties in Maturity Models. Journal of Petroleum Geology, 28(2): 107–117, doi: 10.1111/j.1747-5457.2005.tb00075.x
    Karig, D., Hou, G., 1992. High-Stress Consolidation Experiments and their Geologic Implications. Journal of Geophysical Research, 97(B1): 289–300, doi: 10.1029/91JB02247
    Li, Z. X., Xu, M., Zhao, P., et al., 2013. Geothermal Regime and Hydrocarbon Kitchen Evolution in the Jianghan Basin. Science China: Earth Sciences, 56(2): 240–257, doi: 10.1007/s11430-012-4462-8
    Littke, R., Buker, C., Luckge, A., et al., 1994. A New Evaluation of Palaeo-Heat Flows and Eroded Thicknesses for the Carboniferous Ruhr Basin, Western Germany. International Journal of Coal Geology, 26(3–4): 155–183, doi: 10.1016/0166-5162(94)90009-4
    Liu, W. C., Ye, J. R., Lei, C., et al., 2011. Geothermal and Maturation Histories Modeling of the Source Rocks in the Ledong Sag, Qiongdongnan Basin. Geological Science and Technology Information, 30(6): 110–115 (in Chinese with English Abstract)
    McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40: 25–32, doi: 10.1016/0012-821X(78)90071-7
    Mohamed, A. Y., Iliffe, J. E., Ashcroft, W. A., et al., 2000. Burial and Maturation History of the Heglig Field Area, Muglad Basin, Sudan. Journal of Petroleum Geology, 23(1): 107–128, doi: 10.1111/j.1747-5457.2000.tb00486.x
    Mohsenian, E., Fathi-Mobarakabad, A., Sachsenhofer, R. F., et al., 2014. 3D Basin Modelling in the Central Persian Gulf, Offshore Iran. Journal of Petroleum Geology, 37(1): 55–70, doi: 10.1111/jpg.12569
    Morrow, D. W., Issler, D. R., 1993. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. AAPG Bulletin, 77(4): 610–624
    Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789–821, doi: 10.1306/09071111029
    Sclater, J. G., Christie, P. A. F., 1980. The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth. Reviews Geophysics and Space Physics, 18: 269–311, doi: 10.1029/RG018i001p00269
    Suzuki, N., Matsubayashi, H., Waples, D. W., 1993. A Simpler Kinetic Model of Vitrinite Reflectance. AAPG Bulletin, 77(9): 1502–1508
    Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559–1570
    Tang, Z. H., Wu, Y. H., He, S., 2001. An Improved Method for Calculating Paleoheat Flow from Vitrinite Reflectance Profile. Journal of Earth Sciences, 12(4): 337–342
    Waples, D. W., 1980. Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration. AAPG Bulletin, 64(6): 916–926
    Waples, D. W., 1998. Basin Modelling: How well have We done? In: Duppenbecker, S. J., Iliffe, J. E., eds. Basin Modelling: Practice and Progress. Geological Society, London. 1–14
    Waples, D. W., Kamata, H., Suizu, M., 1992a. The Art of Maturity Modeling Part 1: Finding a Satisfactory Geologic Model. AAPG Bulletin, 76(1): 31–46
    Waples, D. W., Suizu, M., Kamata, H., 1992b. The Art of Maturity Modeling. Part 2: Alternative Models and Sensitivity Analysis. AAPG Bulletin, 76(1): 47–66 doi: 10.1306/bdff875e-1718-11d7-8645000102c1865d
    Xie, X. N., Müller, R. D., Li, S. T., et al., 2006. Origin of Anomalous Subsidence along the Northern South China Sea Margin and Its Relationship to Dynamic Topography. Marine and Petroleum Geology, 23: 745–765, doi: 10.1016/j.marpetgeo.2006.03.004
    Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 24(4): 759–771 doi: 10.1007/s12583-013-0372-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(960) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return