Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 3
Jun 2014
Turn off MathJax
Article Contents
Lei Liu, Jun Zhou, Dong Jiang, Dafang Zhuang, Lamin R Mansaray. Lithological Discrimination of the Mafic-Ultramafic Complex, Huitongshan, Beishan, China: Using ASTER Data. Journal of Earth Science, 2014, 25(3): 529-536. doi: 10.1007/s12583-014-0437-3
Citation: Lei Liu, Jun Zhou, Dong Jiang, Dafang Zhuang, Lamin R Mansaray. Lithological Discrimination of the Mafic-Ultramafic Complex, Huitongshan, Beishan, China: Using ASTER Data. Journal of Earth Science, 2014, 25(3): 529-536. doi: 10.1007/s12583-014-0437-3

Lithological Discrimination of the Mafic-Ultramafic Complex, Huitongshan, Beishan, China: Using ASTER Data

doi: 10.1007/s12583-014-0437-3
More Information
  • Corresponding author: Dong Jiang: jiangd@lreis.ac.cn
  • Received Date: 29 Apr 2013
  • Accepted Date: 28 Aug 2013
  • Publish Date: 01 Jun 2014
  • The Beishan area has more than seventy mafic-ultramafic complexes sparsely distributed in the area and is of a big potential in mineral resources related to mafic-ultramafic intrusions. Many mafic-ultramafic intrusions which are mostly in small sizes have been omitted by previous works. This research takes Huitongshan as the study area, which is a major district for mafic-ultramafic occurrences in Beishan. Advanced spaceborne thermal emission and reflection radiometer (ASTER) data have been processed and interpreted for mapping the mafic-ultramafic complex. ASTER data were processed by different techniques that were selected based on image reflectance and laboratory emissivity spectra. The visible near-infrared (VNIR) and short wave infrared (SWIR) data were transformed using band ratios and minimum noise fraction (MNF), while the thermal infrared (TIR) data were processed using mafic index (MI) and principal components analysis (PCA). ASTER band ratios (6/8, 5/4, 2/1) in RGB image and MNF (1, 2, 4) in RGB image were powerful in distinguishing the subtle differences between the various rock units. PCA applied to all five bands of ASTER TIR imagery highlighted marked differences among the mafic rock units and was more effective than the MI in differentiating mafic-ultramafic rocks. Our results were consistent with information derived from local geological maps. Based on the remote sensing results and field inspection, eleven gabbroic intrusions and a pyroxenite occurrence were recognized for the first time. A new geologic map of the Huitongshan area was created by integrating the results of remote sensing, previous geological maps and field inspection. It is concluded that the workflow of ASTER image processing, interpretation and ground inspection has great potential for mafic-ultramafic rocks identifying and relevant mineral targeting in the sparsely vegetated arid region of northwestern China.

     

  • loading
  • Abrams, M. J., Rothery, D. A., Pontual, A., 1988. Mapping in the Oman Ophiolite Using Enhanced Landsat Thematic Mapper Images. Tectonophysics, 151(1–4): 387–401 http://www.onacademic.com/detail/journal_1000035691362310_22bc.html
    Amer, R., Kusky, T., Ghulam, A., 2010. Lithological Mapping in the Central Eastern Desert of Egypt Using ASTER Data. Journal of African Earth Sciences, 56(2–3): 75–82 http://www.onacademic.com/detail/journal_1000034076951510_585e.html
    Chai, G., Naldrett, A. J., 1992. The Jinchuan Ultramafic Intrusion: Cumulate of a High-Mg Basaltic Magma. Journal of Petrology, 33(2): 277–303 doi: 10.1093/petrology/33.2.277
    Chen, B. L., Wu, G. G., Ye, D. J., et al., 2007. Analysis of the Ore-Controlling Structure of Ductile Shear Zone Type Gold Deposit in Southern Beishan Area, Gansu, Northwest China. Journal of China University of Geosciences, 18(1): 30–38 doi: 10.1016/S1002-0705(07)60016-8
    Di, K., Yue, Z., Liu, Z., et al., 2013. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 24(1): 125–135 doi: 10.1007/s12583-013-0316-3
    Earth Remote Sensing Data Analysis Center (ERSDAC), 2003. Crosstalk Correction Software User's Guide. Mitsubichi Space Software Co. Ltd., Tokyo. 1–17
    Gansu Bureau of Geology and Mineral Resources, 1967. Geological Survey Report and Map of Hongliuyuan Region (1: 200000). Internal Report, Lanzhou (in Chinese)
    Gansu Bureau of Geology and Mineral Resources, 1985. Geological and Mineral Survey Report of Huitongshan Depos it (1: 50 000). Internal Report, Lanzhou (in Chinese)
    Green, A. A., Berman, M., Switzer, P., et al., 1988. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1): 65–74 doi: 10.1109/36.3001
    Hunt, G. R., 1977. Spectral Signatures of Particulate Minerals in the Visible and Near Infrared. Geophysics, 42(3): 501–513 doi: 10.1190/1.1440721
    Jensen, J. R., 2004. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd Edn. Prentice Hall, Upper Saddle River, New Jersey. 444–445
    Kaufman, Y. J., Wald, A. E., Remer, L. A., et al., 1997. The MODIS 2.1-μm Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286–1298 doi: 10.1109/36.628795
    Khan, S. D., Mahmood, K., Casey, J. F., 2007. Mapping of Muslim Bagh Ophiolite Complex (Pakistan) Using New Remote Sensing, and Field Data. Journal of Asian Earth Sciences, 30(2): 333–343 doi: 10.1016/j.jseaes.2006.11.001
    Lillesand, T. M., Kiefer, R. W., Chipman, J. W., 2008. Remote Sensing and Image Interpretation, 6th Edn. John Wiley & Sons Inc., New York. 364–366
    Liu, L., Zhou, J., Jiang, D., et al., 2013. Targeting Mineral Resources with Remote Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China. Remote Sensing, 5(7): 3156–3171 doi: 10.3390/rs5073156
    Liu, L., Zhou, J., Yin, F., et al., 2014. The Reconnaissance of Mineral Resources Through ASTER Data—Based Image Processing, Interpreting and Ground Inspection in the Jiafushaersu Area, West Junggar, Xinjiang (China). Journal of Earth Science, 25(2): 397–406 doi: 10.1007/s12583-014-0423-9
    Nair, A., Mathew, G., 2012. Lithological Discrimination of the Phenaimata Felsic-Mafic Complex, Gujarat, India, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). International Journal of Remote Sensing, 33(1): 198–219 doi: 10.1080/01431161.2011.591441
    Ninomiya, Y., Fu, B. H., Cudahy, T. J., 2005. Detecting Lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Multispectral Thermal Infrared "Radiance-at-Sensor" Data. Remote Sensing of Environment, 99(1–2): 127–139 http://www.researchgate.net/profile/Yoshiki_Ninomiya2/publication/223550481_Detecting_lithology_with_Advanced_Spaceborne_Thermal_Emission_and_Refection_Radiometer_ASTER_multispectral_thermal_infrared_%27radiance-at-sensor%27_data/links/578d712208ae59aa66815c1b/Detecting-lithology-with-Advanced-Spaceborne-Thermal-Emission-and-Refection-Radiometer-ASTER-multispectral-thermal-infrared-radiance-at-sensor-data.pdf
    Rowan, L. C., Mars, J. C., Simpson, C. J., 2005. Lithologic Mapping of the Mordor, NT, Australia Ultramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1–2): 105–126 http://www.sciencedirect.com/science/article/pii/S0034425705001690
    Su, B., Qin, K., Sun, H., et al., 2012. Olivine Compositional Mapping of Mafic-Ultramafic Complexes in Eastern Xinjiang (NW China): Implications for Cu-Ni Mineralization and Tectonic Dynamics. Journal of Earth Science, 23(1): 41–53 doi: 10.1007/s12583-012-0232-y
    Tang, Z. L., Yan, H. Q., Jiao, J. G., et al., 2006. New Classification of Magmatic Sulfide Deposits in China and Ore-Forming Processes of Small Intrusive Bodies. Mineral Deposits, 25(1): 1–9 (in Chinese with English Abstract)
    Tangestani, M. H., Mazhari, N., Agar, B., et al., 2008. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data for Alteration Zone Enhancement in a Semiaridarea, Northern Shahr-E-Babak, SE Iran. International Journal of Remote Sensing, 29(10): 2833–2850 doi: 10.1080/01431160701422239
    Xiong, Y. Q., Khan, S. D., Mahmood, K., et al., 2011. Lithological Mapping of Bela Ophiolite with Remote-Sensing Data. International Journal of Remote Sensing, 32(16): 4641–4658 doi: 10.1080/01431161.2010.489069
    Xu, G., Tang, Z. L., Wang, Y. L., et al., 2012. Features and Genetic Significance of Olivine from Heishan Magmatic Sulfide Ore-bearing Intrusion in Beishan Area, Gansu Province. Mineral Deposits, 31(5): 1075–1086 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201205011.htm
    Yamaguchi, Y., Kahle, A. B., Kawakami, T., et al., 1998. Overview of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transaction on Geoscience and Remote Sensing, 36(4): 1062–1071 doi: 10.1109/36.700991
    Yang, H. Q., Li, Y., Yang, J. G., et al., 2006. Main Metallogenic Characteristics in the Beishan Orogen. Northwestern Geology, 39(2): 78–95 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200602005.htm
    Yang, J. G., Wang, L., Wang, X. H., et al., 2012. Zircon SHRIMP U-Pb Dating of Heishan Mafic-Ultramafic Complex in the Beishan Area of Gansu Province and Its Geological Significance. Geological Bulletin of China, 31(2–3): 448–454 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2012Z1029.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(866) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return