Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 3
Jun 2014
Turn off MathJax
Article Contents
Ye Yuan, Guanghai Shi, Mengchu Yang, Yinuo Wu, Zhaochong Zhang, Anjie Huang, Jiajing Zhang. Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China. Journal of Earth Science, 2014, 25(3): 495-505. doi: 10.1007/s12583-014-0439-1
Citation: Ye Yuan, Guanghai Shi, Mengchu Yang, Yinuo Wu, Zhaochong Zhang, Anjie Huang, Jiajing Zhang. Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China. Journal of Earth Science, 2014, 25(3): 495-505. doi: 10.1007/s12583-014-0439-1

Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China

doi: 10.1007/s12583-014-0439-1
More Information
  • Corresponding author: Ye Yuan, yuenyeah@163.com
  • Received Date: 17 Jun 2013
  • Accepted Date: 12 Sep 2013
  • Publish Date: 01 Jun 2014
  • The Longmen kaolinite deposit is one of the largest hydrothermal clay deposits of Ganxi volcanic basin (northern Wuyi Mountain area, China). The pristine host rocks are rhyolitic crystal-vitric tuff and minor lapilli tuff from the Late Jurassic Ehuling Formation. The ore consists of kaolin-group minerals (kaolinite, dickite), pyrophyllite with minor quartz, sericite, pyrite, etc.. From the host rocks to the transition zones (altered rocks) then to the vein ores, contents of SiO2 and TFe2O3 decrease, whereas Al2O3 and LOI increase, consistent with the contents increase of kaolin minerals and pyrophyllite in the samples. The total REE abundances of the ores are much lower than that of the host and altered rocks, Rb, Nb, Nd, Zr, Ti and Y are significantly depleted. Apparent zoning features of bulk geochemistry and mineral component reflect that the kaolinite deposit occurred at the expense of the host rock by ascending hydrothermal fluids with distinct removal of SiO2, TFe2O3, Na2O, K2O. According to the mineral assemblage, the formation temperature of this deposit falls within the range of 270–350 ℃. With regard to the industrial applications, the kaolinized ores are suitable for use in ceramics and gemologic materials crafted for seal stones. Moreover, in mineralogical terms, this deposit is also proved to be an excellent example for studying channeled hydrothermal alterations of rhyolitic tuff.

     

  • loading
  • Bailey, S. W., 1980. Structures of Layer Silicates. In: Brindley, G. W., Brown, G., eds., Crystal Structures of Clay Minerals and Their X-Ray Identification. Monograph 5, Mineralogical Society, London. 1–123
    Banfield, J. F., Barker, W. W., 1998. Low-Temperature Alteration in Tuffs from Yucca Mountain, Nevada. Clay and Clay Minerals, 46(1): 27–37 doi: 10.1346/CCMN.1998.0460104
    Bottrill, R. S., 1998. A Corundum-Quartz Assemblage in Altered Volcanic Rocks, Bond Range, Tasmania. Mineralogical Magazine, 62(3): 325–332 doi: 10.1180/002646198547710
    Boulvais, P., Vallet, J. M., Esteoule-Choux, J., et al., 2000. Origin of Kaolinization in Brittany (NW France) with Emphasis on Deposits over Granite: Stable Isotopes (O, H) Constraints. Chemical Geology, 168(3): 211–223 http://www.researchgate.net/profile/Philippe_Boulvais/publication/248359906_Origin_of_kaolinization_in_Brittany_(NW_France)_with_emphasis_on_deposits_over_granite_stable_isotopes_(O_H)_constraints/links/00b495273d706d1a2f000000
    Brindley, G. W., Wardle, R., 1970. Monoclinic and Triclinic Forms of Pyrophyllite and Pyrophyllite Anhydride. American Mineralogist, 55(7-8): 1259–1272 http://rruff-2.geo.arizona.edu/uploads/AM55_1259.pdf
    Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks, 8th Edition. Springer-Verlag, Berlin. 415–418, doi: 10.1007/978-3-540-74169-5
    Chen, H. N., Wu, Q. H., He, J. R., et al., 1988. Basic Characters of the Mesozoic Volcanogenic Nonmetallic Deposits in Zhejiang-Fujian-Jiangxi Area. Geological Publishing House, Beijing. 79–98 (in Chinese with English Abstract)
    Chen, T., Yan, X. J., Lu, W., et al., 2009. Gemmological Study on Chicken-Blood Stone from Changhua. Journal of Gems and Gemmology, 11: 7–19 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB200902003.htm
    Crovisier, J. L., Honnorez, J., Fritz, B., et al., 1992. Dissolution of Subglacial Volcanic Glasses from Iceland: Laboratory Study and Modelling. Applied Geochemistry, 1(Suppl. ): 55–81
    De La Fuente, S., Cuadros, J., Fiore, S., et al., 2000. Electron Microscopy Study of Volcanic Tuff Alteration to Illite-Smectite under Hydrothermal Conditions. Clay and Clay Minerals, 48(3): 339–350 doi: 10.1346/CCMN.2000.0480305
    Ece, Ö. I., Schroeder, A. P., 2007. Clay Mineralogy and Chemistry of Halloysite and Alunite Deposits in the Turplu Area, Balikesir, Turkey. Clay and Clay Minerals, 55(1): 18–35 doi: 10.1346/CCMN.2007.0550102
    Ece, Ö. I., Schroeder, A. P., Smilley, M. J., et al., 2008. Acid-Sulphate Hydrothermal Alteration of Andesitic Tuffs and Genesis of Halloysite and Alunite Deposits in the Biga Peninsula, Turkey. Clay Minerals, 43(2): 281–315 doi: 10.1180/claymin.2008.043.2.10
    Erkoyun, H., Kadir, S., 2011. Mineralogy, Micromorphology, Geochemistry and Genesis of a Hydrothermal Kaolinite Deposit and Altered Miocene Host Volcanites in the Hallaçlar Area, Uşak, Western Turkey. Clay Minerals, 46(3): 421–448 doi: 10.1180/claymin.2011.046.3.421
    Gao, K., Di, J. R., 2010. Study on Transparency of Balin Stone and Shoushan Stone. Journal of Gems and Gemmology, 12: 26–33 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB201003009.htm
    García-Romero, E., Vegas, J., Baldonedo, J. L., et al., 2005. Clay Minerals as Alteration Products in Basaltic Volcaniclastic Deposits of La Palma (Canary Islands, Spain). Sedimentary Geology, 174(3–4): 237–253, doi: 10.1016/j.sedgeo.2004.12.007
    Gilg, H. A., Hülmeyer, S., Miller, S., et al., 1999. Supergene Origin of the Lastarria Kaolin Deposit, South-Central Chile, and Paleoclimatic Implications. Clay and Clay Minerals, 47(2): 201–211 doi: 10.1346/CCMN.1999.0470210
    Gilg, H. A., Weber, B., Kasbohm, J., et al., 2003. Isotope Geochemistry and Origin of Illite-Smectite and Kaolinite from the Seilitz and Kemmlitź Kaolin Deposits, Saxony, Germany. Clay Minerals, 38(1): 95–112, doi: 10.1180/0009855033810081
    Harvey, C. C., Murray, H. H., 1993. The Geology, Mineralogy, and Exploitation of Halloysite Clays of Northland, New Zealand. In: Murray, H. H., Bundy, W. M., Harvey, C. C., eds., Kaolin Genesis and Utilization. Special Publication 1, The Clay Minerals Society, Bloomington. 233–248
    Hemley, J. J., 1959. Some Mineralogical Equilibria in the System K2O-Al2O3-SiO2-H2O. American Journal of Science, 257: 241–270 doi: 10.2475/ajs.257.4.241
    Hemley, J. J., Jones, W. R., 1964. Chemical Aspects of Hydrothermal Alteration with Emphasis on Hydrogen Metasomatism. Economic Geology, 59(4): 538–569 doi: 10.2113/gsecongeo.59.4.538
    Hemley, J. J., Montoya, J. W., Marinenko, J. W., et al., 1980. Equilibria in the System Al2O3-SiO2-H2O and Some General Implications for Alteration/Mineralization Processes. Economic Geology, 75(2): 210–228 doi: 10.2113/gsecongeo.75.2.210
    Hinckley, D. N., 1963. Variability in "Crystallinity" Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clay and Clay Minerals, 11(1): 229–235 http://www.clays.org/journal/archive/volume%2011/11-1-229.pdf
    Inoue, A., 1995. Formation of Clay Minerals in Hydrothermal Environments. In: Velde, B., ed., Clays and the Environment: Origin and Mineralogy of Clays. Springer-Verlag, Berlin. 268–329
    Kadir, S., Erman, H., Erkoyun, H., 2011. Mineralogical and Geochemical Characteristics and Genesis of Hydrothermal Kaolinite Deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey. Clay and Clay Minerals, 59(3): 250–276, doi: 10.1346/CCMN.2011.0590304
    Kawano, M., Tomita, K., 1997. Experimental Study of the Formation of Zeolites from Obsidian by Interaction with NaOH and KOH Solutions at 150 and 200 ℃. Clay and Clay Minerals, 45(3): 365–377 doi: 10.1346/CCMN.1997.0450307
    LeBas, M. J., LeMaitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750 doi: 10.1093/petrology/27.3.745
    Liao, Z. T., Zhou, Z. Y., Teng, Y., 2004. Mineral Composition of "Di" of Changhua Chicken-Blood Stone and Influence on Quality. Journal of Tongji University (Natural Science), 32(7): 897–900 (in Chinese with English Abstract)
    Magonthier, M. C., Petit, J. C., Dran, J. C., 1992. Rhyolitic Glasses as Natural Analogues of Nuclear Waste Glasses: Behaviour of an Icelandic Glass upon Natural Aqueous Corrosion. Applied Geochemistry, 1(Suppl): 83–93 http://www.onacademic.com/detail/journal_1000036143956110_7e66.html
    Marumo, K., Nagasawa, K., Kuroda, Y., 1980. Mineralogy and Hydrogen Isotope Geochemistry of Clay Minerals in the Ohnuma Geothermal Area, Northeastern Japan. Earth and Planetary Science Letters, 47(2): 255–262 doi: 10.1016/0012-821X(80)90041-2
    Murray, H. H., Harvey, C. C., Smith, J. M., 1977. Mineralogy and Geology of the Maungaparerua Halloysite Deposit in New Zealand. Clay and Clay Minerals, 25(1): 1–5 doi: 10.1346/CCMN.1977.0250101
    Roy, R., Osborn, E., 1954. The System Al2O3-SiO2-H2O. American Mineralogist, 39: 853–885 http://pubs.geoscienceworld.org/msa/ammin/article-pdf/39/11-12/853/4246107/am-1954-853.pdf
    Sheppard, S. M. F., Gilg, H. A., 1996. Stable Isotope Geochemistry of Clay Minerals. Clay Minerals, 31(1): 1–24 doi: 10.1180/claymin.1996.031.1.01
    Shi, G. H., Jiang, N., Wang, Y. W., et al., 2010. Ba Minerals in Clinopyroxene Rocks from the Myanmar Jadeitite Area: Implications for Ba Recycling in Subduction Zones. European Journal of Mineralogy, 22(2): 199–214, doi: 10.1127/0935-1221/2010/0022-1998
    Shi, G. H., Zhu, R. X., Jiang, N., et al., 2008a. Geochemistry and Mineralogy of Two Contrasting Cretaceous Lavas: Implications for Lithospheric Mantle Evolution beneath the Northeastern China Craton. International Geology Review, 50(11): 1040–1053, doi: 10.2747/0020-6814.50.11.1040
    Shi, G. H., Cui, W. Y., Cao, S. M., et al., 2008b. Ion Microprobe Zircon U-Pb Age and Geochemistry of the Myanmar Jadeitite. Journal of the Geological Society, 165(1): 221–234 doi: 10.1144/0016-76492006-119
    Simeone, R., Dilles, J. H., Padalino, G., et al., 2005. Mineralogical and Stable Isotope Studies of Kaolin Deposits: Shallow Epithermal Systems of Western Sardinia, Italy. Economic Geology, 100(1): 115–130 doi: 10.2113/100.1.0115
    Sun, N., Cui, W. Y., Xu, X., 2003. Mineralogical Characteristics of Genesis of Shoushan Stone in Jialiangshan, Fujian Province. Acta Petrologica et Mineralogica, 22(3): 273–278 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254453192.html
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism In Ocean Basins. Special Publication of Geological Society, London, 42: 313–345
    Tang, Y. J., Zhang, H. F., Ying, J. F., 2006. Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime: Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3): 309–327, doi: 10.1016/j.chemgeo.2006.03.013
    Tzuzuki, Y., Mizutani, S., 1971. A Study of Rock Alteration Process Based on Kinetics of Hydrothermal Experiment. Contributions to Mineralogy and Petrology, 30: 15–33 doi: 10.1007/BF00373365
    Wada, K., 1987. Minerals Formed and Mineral Formation from Volcanic Ash by Weathering. Chemical Geology, 60(1–4): 17–28 http://www.onacademic.com/detail/journal_1000035297458310_347f.html
    Wu, X. F., Cui, W. Y., 1999. A Mineralogical and Petrographical Study of Shoushan Stone (Agalmatolite). Acta Petrologica et Mineralogica, 18(2): 186–192 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW902.012.htm
    Zhang, J. J., Shi, G. H., Tong, G. S., et al., 2009a. Geochemistry and Geochronology of Copper and Ploy Metal-Bearing Volcanic Rocks of the Ehuling Formation in Xujiadun, Zhejiang Province. Acta Geologica Sinica, 83(6): 791–799 (in Chinese with English Abstract)
    Zhang, J. J., Wu, M. S., Chen, Z. H., et al., 2009b. Geochronologic Study on the Jingzhuping Molybdenum-Polymetallic Deposit from Shangrao of Jiangxi Province. Rock and Mineral Analysis, 28(3): 228–232 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903013.htm
    Zhang, S. L., Cui, W. Y., 2002. Study on Mineralogy of Balin Chicken-Blood Stone. Journal of Gems and Gemmology, 4(3): 26–30 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB200203010.htm
    Zhu, X. M., 2003. Study on Mineral Composition and Genesis of the Qingtian Stone from Zhejiang Province. Acta Petrologica et Mineralogica, 22(1): 65–70 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200301009.htm
    Zhu, X. M., 2010. Study on Classification and Identification Characteristics of Varieties of Qingtian Stone. Journal of Gems and Gemmology, 12(4): 17–24 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(766) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return