Abe, Y., 1993, Physical State of the Very Early Earth. Lithos, 30(3–4): 223–235 |
Abe, Y., 1997. Thermal and Chemical Evolution of the Terrestrial Magma Ocean. Physics of the Earth and Planetary Interiors, 100(1–4): 27–39 http://www.researchgate.net/profile/Yutaka_Abe2/publication/222490013_Abe_Y._Thermal_and_chemical_evolution_of_the_terrestrial_magma_ocean._Phys._Earth_Planet._Int._100_27-39/links/54fe754b0cf2672e223f5b9d.pdf |
Agee, C. B., Walker, D., 1988. Static Compression and Olivine Floatation in Ultrabasic Silicate Liquid. J. Geophys. Res. , 93(B4): 3437–3449 doi: 10.1029/JB093iB04p03437 |
Allwardt, J. R., Stebbins, J. F., Schmidt, B. C., et al., 2005. Aluminum Coordination and the Densification of High-Pressure Aluminosilicate Glasses. American Mineralogist, 90(7): 1218–1222 doi: 10.2138/am.2005.1836 |
Anderson, O. L., 1995. Equations of State of Solids for Geophysics and Cramic Sience. Oxford University Press, Oxford |
Bashforth, F., Adams, J. C., 1892. An Attempt to Test the Theory of Capillary Action. Cambridge University Press and Deighton Bell & Co., Cambridge |
Beckmann, F., Herzen, J., Haibel, A., et al., 2008. High Density Resolution in Synchrotron-Radiation-Based Attenuation-Contrast Microtomography. Paper Presented at Proc. SPIE, San Diego |
Birch, F., 1952. Elaticity and Constitution of the Earth's Interior. J. Geophys. Res. , 57: 227–286 doi: 10.1029/JZ057i002p00227 |
Bottinga, Y., Weill, D. F., 1972. The Viscosity of Magmatic Silicate Liquids: A Model Calculation. American Journal of Science, 272(5): 438–475. doi: 10.2475/ajs.272.5.438. |
Brazhkin, V., Farnan, I., Funakoshi, K., et al., 2010. Structural Transformations and Anomalous Viscosity in the B2O3 Melt under High Pressure. Phys. Rev. Lett. , 105: 115701 doi: 10.1103/PhysRevLett.105.115701 |
Brizard, M., Megharfi, M., Mahé, E., et al., 2005. Design of a High Precision Falling-Ball Viscometer. Review of Scientific Instruments, 76(2): 025109 doi: 10.1063/1.1851471 |
Butt, H. J., Graf, K., Kappl, M., 2003. Physics and Chemistry of Interfaces. Wyllie-VCH Verlag, Darmstadt. 361 http://www.researchgate.net/publication/345918476_Physics_and_Chemistry_of_Interfaces |
Coltice, N., Moreira, M., Hernlund, J., et al., 2011. Crystallization of a Basal Magma Ocean Recorded by Helium and Neon. Earth Planet. Sci. Lett. , 308(1–2): 193–199 http://perso.ens-lyon.fr/stephane.labrosse/sites/default/files/PDF/Coltice_etal2011.pdf |
Cromer, D. T., 1969. Compton Scattering Factors for Aspherical Free Atoms. The Journal of Chemical Physics, 50: 4857–4859 doi: 10.1063/1.1670980 |
Cromer, D. T., Mann, J. B., 1967. Compton Scattering Factors for Spherically Symmetric Free Atoms. The Journal of Chemical Physics, 47: 1892–1893 doi: 10.1063/1.1712213 |
Dobson, D. P., Crichton, W. A., Vocadlo, L., et al., 2000. In Situ Measurement of Viscosity of Liquids in the Fe-FeS System at High Pressures and Temperatures. American Mineralogist, 85: 1838–1842 doi: 10.2138/am-2000-11-1231 |
Faber, T. E., Ziman, J. M., 1965. A Theory of the Electrical Properties of Liquid Metals. Philosophical Magazine, 11(109): 153–173 doi: 10.1080/14786436508211931 |
Faxén, H., 1922. Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer Zähen Flüssigkeit, Die Zwischen Zwei Parallelen Ebenen Wänden Eingeschlossen Ist. Annalen der Physik, 373(10): 89–119 doi: 10.1002/andp.19223731003 |
Funakoshi, K., 1995. Energy-Dispersive X-Ray Diffraction Study for Alkali Silicate Melts Using Synchrotron Radiation Under High Pressure and Temperature: [Dissertation]. Tokyo Institute of Technology, Tokyo. 117 |
Funamori, N., Yamamoto, S., Yagi, T., et al., 2004. Exploratory Studies of Silicate Melt Sructure at High Pressures and Temperatures by In Situ X-Ray Diffraction. J. Geophys. Res. , 109: B03203 doi: 10.1029/2003JB002650/full |
Gaetani, G., Grove, T., 1999. Wetting of Mantle Olivine by Sulfide Melt: Implications for Re/Os Ratios in Mantle Peridotite and Late-Stage Core Formation. Earth Planet. Sci. Lett. , 169: 147–163 doi: 10.1016/S0012-821X(99)00062-X |
Genge, M. J., Price, G. D., Jones, A. P., 1995. Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures: Implications for Carbonatite Magmas. Earth Planet. Sci. Lett. , 131(3–4): 225–238 http://www3.imperial.ac.uk/pls/portallive/docs/1/6831920.PDF |
Ghiorso, M. S., 2004. An Equation of State for Silicate Melts. Ⅲ. Analysis of Soichiometric Liquids at Elevated Pressure: Shock Compression Data, Molecular Dynamics Simulations and Mineral Fusion Curves. American Journal of Science, 304(8–9): 752–810 |
Giordano, D., Russell, J. K., Dingwell, D. B., 2008. Viscosity of Magmatic Liquids: A Model. Earth Planet. Sci. Lett. , 271(1–4): 123–134 |
Greaves, G. N., Sen, S., 2007. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. Advances in Physics, 56(1): 1–166 doi: 10.1080/00018730601147426 |
Hansen, F. K., 1993. Surface Tension by Image Analysis: Fast and Automatic Measurements of Pendant and Sessile Drops and Bubbles. Journal of Colloid and Interface Science, 160(1): 209–217 doi: 10.1006/jcis.1993.1386 |
Henderson, G. S., Calas, G., Stebbins, J. F., 2006. The Structure of Silicate Glasses and Melts. Elements, 2: 269–273 doi: 10.2113/gselements.2.5.269 |
Herzfeld, K. F., Litovitz, T. A., 1959. Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York. 535 |
Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen-Depleted Liquid Outer Core of the Earth. Nature, 479: 513–516 doi: 10.1038/nature10621 |
Jing, Z., Karato, S. I., 2008. Compositional Effect on the Pressure Derivatives of Bulk Modulus of Silicate Melts. Earth Planet. Sci. Lett. , 272(1–2): 429–436 |
Jing, Z., Karato, S. I., 2011. A New Approach to the Equation of State of Silicate Melts: An Application of the Theory of Hard Sphere Mixtures. Geochimica et Cosmochimica Acta, 75(22): 6780–6802 doi: 10.1016/j.gca.2011.09.004 |
Jing, Z., Wang, Y., Kono, Y., et al., 2014. Moon's Molten Outer Core: Composition, Density and Thermal State. Earth Planet. Sci. Lett. , 396: 78–87 doi: 10.1016/j.epsl.2014.04.015 |
Jones, A., Genge, M., Carmody, L., 2013. Carbonate Melts and Carbonatites. Reviews in Mineralogy and Geochemistry, 75: 289–322 doi: 10.2138/rmg.2013.75.10 |
Kanzaki, M., Kurita, K., Fujii, T., et al., 1987. A New Technique to Measure the Viscosity and Density of Silicate Melts at High Pressure, In: Manghnani, M. H., Syono, Y., eds., High-Pressure Research in Mineral Physics. Terrapub/AGU, Tokyo. 195–200 http://ci.nii.ac.jp/naid/10003669474 |
Kapilashrami, E., Jakobsson, A., Seetharaman, S., et al., 2003. Studies of the Wetting Characteristics of Liquid Iron on Dense Alumina by the X-Ray Sessile Drop Technique. Metall. and Materi. Trans. B, 34(2): 193–199 doi: 10.1007/s11663-003-0006-0 |
Karki, B. B., 2010. First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties. Reviews in Mineralogy and Geochemistry, 71(1): 355–389 doi: 10.2138/rmg.2010.71.17 |
Katayama, Y., 1996. Density Measurements of Non-Cystalline Materials under High Pressure and High Temperature. High Pressure Research, 14: 383–391 doi: 10.1080/08957959608201424 |
Katayama, Y., 2002. In Situ Observation of a First-Order Liquid-Liquid Transition in Phosphorus. Journal of Non-Crystalline Solids, 312–314: 8–14 |
Katayama, Y., Tsuji, K., Chen, J. Q., et al., 1993. Density of Liquid Tellurium under High Pressure. Journal of Non-Crystalline Solids, 156–158(Part 2): 687–690 http://www.onacademic.com/detail/journal_1000035322278210_81a1.html |
Ketcham, R. A., Carlson, W. D., 2001. Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Computers & Geosciences, 27(4): 381–400 |
Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014a. Ultralow Viscosity of Carbonate Melts at High Pressures. Nat. Commun. , 5: 5091 doi: 10.1038/ncomms6091 |
Kono, Y., Park, C., Kenney-Benson, C., et al., 2014b. Toward Comprehensive Studies of Liquids at High Pressures and High Temperatures: Combined Structure, Elastic Wave Velocity, and Viscosity Measurements in the Paris-Edinburgh Cell. Physics of the Earth and Planetary Interiors, 228: 269–280 doi: 10.1016/j.pepi.2013.09.006 |
Kono, Y., Kenney-Benson, C., Kenney-Benson, C., et al., 2013. Anomaly in the Viscosity of Liquid KCl at High Pressures. Physical Review B, 87(2): 024302 http://www.researchgate.net/profile/Yanbin_Wang3/publication/235342810_Anomaly_in_the_viscosity_of_liquid_KCl_at_high_pressures/links/53ea88420cf2dc24b3cd7a0c.pdf |
Kono, Y., Park, C., Sakamaki, T., et al., 2012. Simultaneous Structure and Elastic Wave Velocity Measurement of SiO2 Glass at High Pressures and High Temperatures in a Paris-Edinburgh Cell. Review of Scientific Instruments, 83(3): 33905–33908 doi: 10.1063/1.3698000 |
Kung, J., Li, B., Uchida, T., et al., 2004. In Situ Measurements of Sound Velocities and Densities across the Orthopyroxene—High-Pressure Clinopyroxene Tansition in MgSiO3 at High Pressure. Physics of the Earth and Planetary Interiors, 147(1): 27–44 doi: 10.1016/j.pepi.2004.05.008 |
Kushiro, I., Mysen, B. O., 2002. A Possible Effect of Melt Sructure on the Mg-Fe2+ Partitioning between Olivine and Melt. Geochimica et Cosmochimica Acta, 66(12): 2267–2272 doi: 10.1016/S0016-7037(01)00835-3 |
Labrosse, S., 2003. Thermal and Magnetic Evolution of the Earth's Core. Physics of the Earth and Planetary Interiors, 140(1–3): 127–143 http://courses.seas.harvard.edu/climate/eli/Courses/EPS281r/Sources/Earth-age-and-thermal-history/more/labrosse_pepi_2002.pdf |
Labrosse, S., Hernlund, J. W., Coltice, N., 2007. A Crystallizing Dense Magma Ocean at the Base of the Earth's Mantle. Nature, 450(7171): 866–869 doi: 10.1038/nature06355 |
Lange, R. L., Carmichael, I. S. E., 1990. Thermodynamic Properties of Silicate Liquids with Emphasis on Density, Thermal Expansion and Compressibility. Reviews in Mineralogy and Geochemistry, 24(1): 25–64 http://scans.hebis.de/01/97/78/01977862_toc.pdf |
Lee, S. K., 2011. Simplicity in Melt Densification in Multicomponent Magmatic Reservoirs in Earth's Interior Revealed by Multinuclear Magnetic Resonance. Proceedings of the National Academy of Sciences, 108(17): 6847–6852 doi: 10.1073/pnas.1019634108 |
Lee, S. K., Eng, P. J., Mao, H. K., 2014. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-Ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 78(1): 139–174 doi: 10.2138/rmg.2014.78.4 |
Lesher, C. E., 2010. Self-Diffusion in Silicate Melts: Theory, Observations and Applications to Magmatic Systems, Reviews in Mineralogy and Geochemistry, 72(1): 269–309 |
Lesher, C. E., Wang, Y., Gaudio, S., et al., 2009. Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 174(1–4): 292–301 |
Li, B., Kung, J., Uchida, T., et al., 2005. Simultaneous Equation of State, Pressure Calibration and Sound Velocity Measurements to Lower Mantle Pressures Using Multi-Anvil Apparatus, In: Chen, J., Wang, Y., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 49–66 |
Lorch, E., 1969. Neutron Diffraction by Germania, Silica and Radiation-Damaged Silica Glasses. Journal of Physics C: Solid State Physics, 2(2): 229 doi: 10.1088/0022-3719/2/2/305 |
Maude, A. D., 1961. End Effects in a Falling-Sphere Viscometer. British Journal of Applied Physics, 12(6): 293 doi: 10.1088/0508-3443/12/6/306 |
Mezouar, M., 2002. Multichannel Collimator for Structural Investigation of Liquids and Amorphous Materials at High Pressures and Temperatures. Rev. Sci. Instrum. , 73(10): 3570 doi: 10.1063/1.1505104 |
Minarik, W. G., Ryerson, F. J., Watson, E. B., 1996. Textural Entrapment of Core-Forming Melts. Science, 272(5261): 530–533 doi: 10.1126/science.272.5261.530 |
Morard, G., Sanloup, C., Guillot, B., et al., 2008a. In Situ Structural Investigation of Fe-S-Si Immiscible Liquid System and Evolution of Fe-S Bond Properties with Pressure. J. Geophys. Res. , 113: B10205 doi: 10.1029/2008JB005663 |
Morard, G., Andrault, D., Guignot, N., et al., 2008b. In Situ Determination of Fe-Fe3S Phase Diagram and Liquid Structural Properties up to 65 GPa. Earth and Planetary Science Letters, 272(3–4): 620–626 http://www.onacademic.com/detail/journal_1000035380864710_8b71.html |
Morard, G., Sanloup, C., Fiquet, G., et al., 2007. Structure of Eutectic Fe-FeS Melts to Pressures up to 17 GPa: Implications for Planetary Cores. Earth Planet. Sci. Lett. , 263(1–2): 128–139 http://www.onacademic.com/detail/journal_1000035379816810_f854.html |
Morard, G., Siebert, J., Andrault, D., et al., 2013. The Earth's Core Composition from High Pressure Density Measurements of Liquid Iron Alloys. Earth Planet. Sci. Lett. , 373: 169–178 doi: 10.1016/j.epsl.2013.04.040 |
Mysen, B., 1983. The Structure of Silicate Melts. Ann. Rev. Earth Planet. Sci. , 11: 75–97 doi: 10.1146/annurev.ea.11.050183.000451 |
Mysen, B., Richet, P., 2005. Chapter 4 Melt and Glass Structure: Basic Concepts, In: Mysen, B., Richet, P., eds., Silicate Glasses and Melts. Elsevier, Amsterdam. 101–129 |
Nishida, K., Ohtani, E., Urakawa, S., et al., 2011. Density Measurement of Liquid FeS at High Pressures Using Synchrotron X-Ray Absorption. American Mineralogist, 96(5): 864 |
Nishikawa, N., Iijima, T., 1984. Correction for Intensity Data in Energy-Dispersive X-Ray Diffractometry of Liquid, Application to Carbon Tetrachloride. Bull. Chem. Soc. Jpn. , 57: 1750–1759 doi: 10.1246/bcsj.57.1750 |
Phillips, J. C., 1979. Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys. Journal of Non-Crystalline Solids, 34(2): 153–181 doi: 10.1016/0022-3093(79)90033-4 |
Poe, B. T., Romano, C., Liebske, C., et al., 2006. High-Temperature Viscosity Measurements of Hydrous Albite Liquid Using In-Situ Falling-Sphere Viscometry at 2.5 GPa. Chemical Geology, 229(1–3): 2–9 |
Rigden, S. M., Ahrens, T. J., Stolper, E. M., 1988. Shock Compression of Molten Silicate: Results for a Model Basaltic Composition. J. Geophys. Res. , 93(B1): 367–382 doi: 10.1029/JB093iB01p00367 |
Rotenberg, Y., Boruvka, L., Neumann, A. W., 1983. Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces. Journal of Colloid and Interface Science, 93(1): 169–183 doi: 10.1016/0021-9797(83)90396-X |
Rutter, M. D., Secco, R. A., Liu, H., et al., 2002a. Viscosity of Liquid Fe at High Pressure. Physical Review B, 66(6): 060102 http://www.researchgate.net/profile/Yanbin_Wang3/publication/234167803_Viscosity_of_liquid_Fe_at_high_pressure/links/0912f5137d812578f1000000.pdf |
Rutter, M. D., Secco, R. A., Uchida, T., et al., 2002b. Towards Evaluating the Viscosity of the Earth's Outer Core: An Experimental High Pressure Study of Liquid Fe-S (8.5 wt. % S). Geophysical Research Letters, 29(8): 58-51–58-54 |
Sakamaki, T., Kono, Y., Wang, Y., et al., 2014a. Contrasting Sound Velocity and Intermediate-Range Structural Order between Polymerized and Depolymerized Silicate Glasses under Pressure. Earth Planet. Sci. Lett. , 391: 288–295 doi: 10.1016/j.epsl.2014.02.008 |
Sakamaki, T., Wang, Y., Park, C., et al., 2014b. Contrasting Behavior of Intermediate-Range Order Sructures in Jadeite Glass and Melt. Physics of the Earth and Planetary Interiors, 228: 281–286 doi: 10.1016/j.pepi.2014.01.008 |
Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2009. Measurement of Hydrous Peridotite Magma Density at High Pressure Using the X-Ray Absorption Method. Earth Planet. Sci. Lett. , 287(3–4): 293–297 |
Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2010. Density of Dry Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 95(1): 144–147 doi: 10.2138/am.2010.3143 |
Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2011. Density of Carbonated Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 96(4): 553–557 doi: 10.2138/am.2011.3577 |
Sakamaki, T., Suzuki, A., Ohtani, E., 2006. Stability of Hydrous Melt at the Base of the Earth's Upper Mantle. Nature, 439(7073): 192–194 doi: 10.1038/nature04352 |
Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geosci. , 6(12): 1041–1044 doi: 10.1038/ngeo1982 |
Sakamaki, T., Wang, Y., Park, C., et al., 2012. Structure of Jadeite Melt at High Pressures up to 4.9 GPa. Journal of Applied Physics, 111(11): 112623–112625 doi: 10.1063/1.4726246 |
Sanloup, C., Fiquet, G., Gregoryanz, E., et al., 2004. Effect of Si on Liquid Fe Compressibility: Implications for Sound Velocity in Core Materials. Geophysical Research Letters, 31: L07604 |
Sanloup, C., Guyot, F., Gillet, P., 2000. Density Measurements of Liquid Fe-S Alloys at High Pressure. Geophysical Research Letters, 27: 811–814 doi: 10.1029/1999GL008431 |
Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge |
Secco, R. A., Rutter, M. D., Balog, S. P., et al., 2002. Viscosity and Density of Fe-S Liquids at High Pressures. Journal of Physics: Condensed Matter, 14(44): 11325 doi: 10.1088/0953-8984/14/44/476 |
Shannon, M. C., Agee, C. B., 1998. Percolation of Core Melts at Lower Mantle Conditions. Science, 280(5366): 1059–1061 doi: 10.1126/science.280.5366.1059 |
Shen, G., Prakapenka, V. B., Rivers, M. L., et al., 2004. Structure of Liquid Iron at Pressures up to 58 GPa. Physical Review Letters, 92: 185701 doi: 10.1103/PhysRevLett.92.185701 |
Shenoy, G. K., Viccaro, P. J., Mills, D. M., 1988. Characteristics of the 7-GeV Advanced Photon Source: A Guide for Users. Rep. ANL-88-9. Argonne National Laboratory, Argonne. 1–57 |
Stebbins, J. F., 1995. Dynamics and Structure of Slicate and Oxide Melts: Nuclear Magnetic Resonance Studies. Reviews in Mineralogy and Geochemistry, 32(1): 191–246 |
Stebbins, J. F., Xue, X., 2014. NMR Spectroscopy in Inorganic Earth Materials, In: Henderson, G. S., Neuville, D., eds., Spectroscopic and Other Characterization Methods in Mineralogy and Materials Sciences. Mineralogical Society of America, Chantilly, VA. 650–653 |
Stevenson, D. J., 2003. Planetary Magnetic Fields. Earth Planet. Sci. Lett. , 208(1–2): 1–11 |
Susman, S., Volin, K. J., Price, D. L., et al., 1991. Intermediate-Range Order in Permanently Densified Vitreous SiO2: A Neutron-Diffraction and Molecular-Dynamics Study. Physical Review B, 43(1): 1194–1197 doi: 10.1103/PhysRevB.43.1194 |
Suzuki, A., Ohtani, E., Terasaki, H., et al., 2005. Viscosity of Silicate Melts in CaMgSi 2O6-NaAlSi2O6 System at High Pressure. Physics and Chemistry of Minerals, 32(2): 140–145 doi: 10.1007/s00269-005-0452-0 |
Terasaki, H., Frost, D. J., Rubie, D. C., et al., 2005. The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure: Implications for Martian Core Formation. Earth Planet. Sci. Lett. , 232(3–4): 379–392 |
Terasaki, H., Suzuki, A., Ohtani, E., et al., 2006. Effect of Pressure on the Viscosity of Fe-S and Fe-C Liquids up to 16 GPa. Geophysical Research Letters, 33: L22307 doi: 10.1029/2006GL027147 |
Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2008. Interfacial Tension Measurement of Ni-S Liquid Using High-Pressure X-Ray Micro-Tomography. High Pressure Research, 28(3): 327–334 doi: 10.1080/08957950802208902 |
Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2009. In Situ Measurement of Interfacial Tension of Fe-S and Fe-P Liquids under High Pressure Using X-Ray Radiography and Tomography Techniques. Physics of the Earth and Planetary Interiors, 174(1–4): 220–226 |
Thomas, C. W., Asimow, P. D., 2013a. Direct Shock Compression Experiments on Premolten Forsterite and Progress toward a Consistent High-Pressure Equation of State for CaO-MgO-Al2O3-SiO2-FeO Liquids. Journal of Geophysical Research: Solid Earth, 118(11): 2013JB010232 |
Thomas, C. W., Asimow, P. D., 2013b. Preheated Shock Experiments in the Molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 Ternary: A Test for Linear Mixing of Liquid Volumes at High Pressure and Temperature. Journal of Geophysical Research: Solid Earth, 118(7): 3354–3365 doi: 10.1002/jgrb.50269 |
Thorpe, M. F., 1983. Continuous Deformations in Random Networks. Journal of Non-Crystalline Solids, 57(3): 355–370 doi: 10.1016/0022-3093(83)90424-6 |
Tinker, D., Lesher, C. E., Baxter, G. M., et al., 2004. High-Pressure Viscometry of Polymerized Silicate Melts and Limitations of the Eyring Equation. American Mineralogist, 89(11–12): 1701–1708 |
Tsuji, K., Yaoita, K., Imai, M., et al., 1989. Measurements of X-Ray Diffraction for Liquid Metals under High Pressure. Review of Scientific Instruments, 60(7): 2425–2428 doi: 10.1063/1.1140736 |
Wang, Y., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 74: 3002–3011 doi: 10.1063/1.1570948 |
Wang, Y., Rivers, M., Sutton, S., et al., 2009. The Large-Volume High-Pressure Facility at GSECARS: A "Swiss-Army-Knife" Approach to Synchrotron-Based Experimental Studies. Physics of the Earth and Planetary Interiors, 174(1–4): 270–281 |
Wang, Y., Sakamaki, T., Skinner, L. B., et al., 2014. Atomistic Insight into Viscosity and Density of Silicate Melts under Pressure. Nat. Commun. , 5: 3241 doi: 10.1038/ncomms4241 |
Wang, Y., Shen, G., Rivers, M. L., 2002. High Pressure Research Techniques at Third Generation Synchrotron Radiation Sources, In: Mills, D. M., ed., Third-Generation Hard X-Ray Synchrotron Radiation Sources. John Wiley & Sons, New York. 203–236 |
Wang, Y., Uchida, T., Westferro, F., et al., 2005. High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 40(21): 5763–5766 |
Yamada, A., Inoue, T., Urakawa, S., et al., 2007. In Situ X-Ray Experiment on the Structure of Hydrous Mg-Silicate Melt under High Pressure and High Temperature. Geophysical Research Letters, 34(10): L10303 doi: 10.1029/2006GL028823 |
Yamada, A., Wang, Y., Inoue, T., et al., 2011. High-Pressure X-Ray Diffraction Studies on the Structure of Liquid Silicate Using a Paris—Edinburgh Type Large Volume Press. Review of Scientific Instruments, 82(1): 15103–05107 doi: 10.1063/1.3514087 |
Zouboulis, E., Grimsditch, M., Ramdas, A., et al., 1998. Temperature Dependence of the Elastic Moduli of Diamond: A Brillouin-Scattering Study. Physical Review B, 57(5): 2889 doi: 10.1103/PhysRevB.57.2889 |