Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Huilin Xing, Yan Liu, Jinfang Gao, Shaojie Chen. Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs. Journal of Earth Science, 2015, 26(1): 28-36. doi: 10.1007/s12583-015-0506-2
Citation: Huilin Xing, Yan Liu, Jinfang Gao, Shaojie Chen. Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs. Journal of Earth Science, 2015, 26(1): 28-36. doi: 10.1007/s12583-015-0506-2

Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs

doi: 10.1007/s12583-015-0506-2
More Information
  • Corresponding author: Huilin Xing, h.xing@uq.edu.au
  • Received Date: 12 Mar 2014
  • Accepted Date: 26 Sep 2014
  • Publish Date: 01 Feb 2015
  • This paper briefly introduces the current state in computer modelling of geothermal reservoir system and then focuses on our research efforts in high performance simulation of enhanced geothermal reservoir system. A novel supercomputer simulation tool has been developing towards simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials at different spatial and temporal scales. It is applied here to simulate and visualise the enhanced geothermal system (EGS), such as (1) visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e., the permeability) for the further numerical analysis and evaluation of the enhanced geothermal reservoir; (2) converting the available fractured rock image/fracture data as well as the reservoir geological geometry to suitable meshes/grids and further simulating the fluid flow in the complicated fractures involving the detailed description of fracture dimension and geometry by the lattice Boltzmann method and/or finite element method; (3) interacting fault system simulation to determine the relevant complicated rupture process for evaluating the geological setting and the in-situ reservoir properties; (4) coupled thermo-fluid flow analysis of a geothermal reservoir system for an optimised geothermal reservoir design and management. A few of application examples are presented to show its usefulness in simulating the enhanced geothermal reservoir system.

     

  • loading
  • Bjornsson, G., Bodvarsson, G., 1990. A Survey of Geothermal Reservoir Properties. Geothermics, 19: 17–27 doi: 10.1016/0375-6505(90)90063-H
    Bringemeier, D., Wang, X., Xing, H. L., et al., 2010. Modelling of Multiphase Fluid Flow for an Open Pit Development within a Geothermal Active Caldera. In: Proceedings of the 11th IAEG Congress (International Association for Engineering Geology and the Environment). Auckland, New Zealand
    Brown, D., DuTeaux, R., Kruger, P., et al., 1999. Fluid Circulation and Heat Extraction from Geothermal Reservoirs. Geothermics, 28: 553–572 doi: 10.1016/S0375-6505(99)00028-0
    Cox, S. F., Knackstedt, M. A., Braun, J., 2001. Principles of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems. Reviews in Economic Geology, 14: 1–24 http://www.researchgate.net/publication/284229902_Principles_of_structural_control_on_permeability_and_fluid_flow_in_hydrothermal_systems
    De Simone, S., Vilarrasa, V., Carrera, J., et al., 2013. Thermal Coupling may Control Mechanical Stability of Geothermal Reservoirs during Cold Water Injection. Physics and Chemistry of the Earth, Parts A/B/C, 64: 117–126 doi: 10.1016/j.pce.2013.01.001
    Driesner, T., Heinrich, C. A., 2007. The System H2O-NaCl. I. Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000 ℃, 0 to 5 000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71: 4880–4901 doi: 10.1016/j.gca.2006.01.033
    Gao, J., Xing, H. L., 2012a. LBM Simulation of Fluid Flow in Fractured Porous Media with Permeable Matrix, Theor. Appl. Mech. Lett. , 2: 032001(4)
    Gao, J., Xing, H. L., 2012b. High Performance Simulation of Complicated Fluid Flow in 3D Fractured Porous Media Using LBM. In: 10th International Meeting on High-Performance Computing for Computational Science. Kobe, Japan
    Gao, J., Xing, H. L., Tian, Z., 2013. Lattice Boltzmann Modeling and Evaluation of Fluid Flow in Heterogeneous Porous Media Involving Multiple Matrix Constituents. Computers & Geosciences, 62: 198–207 doi: 10.5555/2745549.2745648
    Held, S., Genter, A., Kohl, T., et al., 2014. Economic Evaluation of Geothermal Reservoir Performance through Modeling the Complexity of the Operating EGS in Soultz-Sous-Forêts. Geothermics, 51: 270–280 doi: 10.1016/j.geothermics.2014.01.016
    Ingebritsen, S. E., Geiger, S., Hurwitz, S., et al., 2010. Numerical Simulation of Magmatic Hydrothermal Systems. Rev. Geophys., 48: RG1002. doi: 10.1029/2009RG000287
    Jeanne, P., Rutqvist, J., Vasco, D., et al., 2014. Development of a 3D Hydrogeological and Geomechanical Model of an Enhanced Geothermal System Using Microseismic and Ground Deformation Data from a 1-year Injection Program. In: Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California
    Li, Q., Wei, Y. N., Liu, G., et al., 2014. Combination of CO2 Geological Storage with Deep Saline Water Recovery in Western China: Insights from Numerical Analyses. Applied Energy, 116: 101–110 doi: 10.1016/j.apenergy.2013.11.050
    Liu, X., Xing, H. L., Zhang, D., 2014. Fluid Focusing and Its Link to Vertical Morphological Zonation at the Dajishan Vein-Type Tungsten Deposit, South China. Ore Geology Reviews, 62: 245–258 doi: 10.1016/j.oregeorev.2014.04.005
    Liu, Y. H., Xing, H. L., Guan, Z. Q., 2011. An Indirect Approach for Automatic Generation of Quadrilateral Meshes with Arbitrary Line Constraints. International Journal for Numerical Methods in Engineering, 87(9): 906–922. doi: 10.1002/nme.3145
    Liu, Y., Xing, H. L., 2010. Automatic Meshing and Construction of a 3D Reservoir System: From Visualization towards Simulation. In: Gurgenci, H., Weber, R. D., eds., Proceedings of the 2010 Australian Geothermal Energy Conference. Nov. 17–19, Adelaide
    Liu, Y., Xing, H. L., 2013. A Boundary Focused Quadrilateral Mesh Generation Algorithm for Multi-Material Structures. Journal of Computational Physics, 232: 516–528 doi: 10.1016/j.jcp.2012.08.042
    O'Sullivan, M. J., Pruess, K., Lippmann, M. J., 2001. State of the Art of Geothermal Reservoir Simulation. Geothermics, 30: 395–429 doi: 10.1016/S0375-6505(01)00005-0
    Rutqvist, J., 2014. Pre-Stimulation Coupled THM Modeling Related to the Northwest Geysers EGS Demonstration Project. In: 38th Annual Workshop on Geothermal Reservoir Engineering, Stanford
    Rybach, L., 2010. The Future of Geothermal Energy and Its Challenges. In: Proceedings World Geothermal Congress 2010. 25–29 April, 2010, Bali
    Sanyal, S. K., Butler, S. J., Swenson, D., et al., 2000. Review of the State-of-the-Art of Numerical Simulation of Enhanced Geothermal Systems. In: Proceedings World Geothermal Congress 2000, Tohoku. 3853–3858
    Sukop, M. C., Thorne, D. T., 2007. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer
    Tester, J. W., Anderson, B. J., Batchelor, A. S., et al., 2006. The Future of Geothermal Energy—Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology, Cambridge. 358
    Tian, Z., Xing, H. L., Tan, Y., et al., 2014. A Coupled Lattice Boltzmann Model for Simulating Reactive Transport in CO2 Injection. Physica A: Statistical Mechanics and Its Applications, 403: 155–164 doi: 10.1016/j.physa.2014.02.040
    Wyborn, D., 2013. The Innamincka EGS Project—10 Years of Operation. http://cug60.cug.edu.cn/dgs2012/11%20Doone%20Wyborn.pdf
    Xing, H. L., 2008. Progress Report: Supercomputer Simulation of Hot Fractured Rock Geothermal Reservoir Systems. ESSCC/ACcESS Technical Report, The University of Queensland. 1–48
    Xing, H. L., 2014. Finite Element Simulation of Transient Geothermal Flow in Extremely Heterogeneous Fractured Porous Media. Journal of Geochemical Exploration, 144(Part A): 168–178. doi: 10.1016/j.gexplo.2014.03.002
    Xing, H. L., Liu, Y., 2011. Automated Quadrilateral Mesh Generation for Digital Image Structure. Theoretical and Applied Mechanics Letters, 16: 061001.1-061001.3. doi: 10.1063/2.1106101
    Xing, H. L., Liu, Y., 2014. Mesh Generation for 3D Geological Reservoirs with Arbitrary Stratigraphic Surface Constraints. Procedia Computer Science, 29: 897–909. doi: 10.1016/j.procs.2014.05.081
    Xing, H. L., Makinouchi, A., 2002a. Finite Element Analysis of Sandwich Friction Experimental Model of Rocks. Pure and Applied Geophysics, 159: 1985–2009 doi: 10.1007/s00024-002-8719-6
    Xing, H. L., Makinouchi, A., 2002b. Finite-Element Modelling of Multibody Contact and Its Application to Active Faults. Concurrency and Computation: Practice and Experience, 14: 431–450 doi: 10.1002/cpe.623
    Xing, H. L., Makinouchi, A., 2002c. Three Dimensional Finite Element Modelling of Thermomechanical Frictional Contact between Finite Deformation Bodies Using R-Minimum Strategy. Computer Methods in Applied Mechanics and Engineering, 191: 4193–4214 doi: 10.1016/S0045-7825(02)00372-9
    Xing, H. L., Makinouchi, A., Mora, P., 2007. Finite Element Modelling of Interacting Fault System. Physics of the Earth and Planetary Interiors, 163: 106–121 doi: 10.1016/j.pepi.2007.05.006
    Xing, H. L., Mora, P., 2006. Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project. Pure and Applied Geophysics, 163: 2297–2316. doi: 10.1007/s00024-006-0127-x
    Xing, H. L., Mora, P., Makinouchi, A., 2006. A Unified Frictional Description and It's Application to the Simulation of Frictional Instability Using the Finite Element Method. Philosophical Magazine, 86(21/22): 3453–3475 doi: 10.1080/14786430500198452?tab=permissions&scroll=top
    Xing, H. L., Yu, W., Zhang, J., 2009. 3D Mesh Generation in Geocomputing. In: Xing, H. L., ed., Advances in Geocomputing. Springer-Verlag, Berlin & Heidelberg. 27–64. doi: 10.1007/978-3-540-85879-9_2
    Xing, H. L., Zhang, J., 2009. Finite Element Modelling of Nonlinear Deformation of Rate-Dependent Materials Using a R-Minimum Strategy. Acta Geotechnica. 4(2): 139–148. doi: 10.1007/s11440-009-0090-7
    Xiong, Y., Fakcharoenphol, P., Winterfeld, P., et al., 2013. Coupled Geomechanical and Reactive Geochemical Model for Fluid and Heat Flow: Application for Enhanced Geothermal Reservoir. In: SPE Reservoir Characterization and Simulation Conference and Exhibition, Society of Petroleum Engineers
    Zeng, Y. C., Wu, N. Y., Su, Z., et al., 2014. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir through a Single Horizontal Well at Yangbajing Geothermal Field. Energy, 65: 472–487 http://www.ingentaconnect.com/content/el/03605442/2014/00000065/00000001/art00047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(1136) PDF downloads(386) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return