Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Arie van den Berg, Guus Segal, David A. Yuen. SEPRAN: A Versatile Finite-Element Package for a WideVariety of Problems in Geosciences. Journal of Earth Science, 2015, 26(1): 89-95. doi: 10.1007/s12583-015-0508-0
Citation: Arie van den Berg, Guus Segal, David A. Yuen. SEPRAN: A Versatile Finite-Element Package for a Wide Variety of Problems in Geosciences. Journal of Earth Science, 2015, 26(1): 89-95. doi: 10.1007/s12583-015-0508-0

SEPRAN: A Versatile Finite-Element Package for a Wide Variety of Problems in Geosciences

doi: 10.1007/s12583-015-0508-0
More Information
  • Corresponding author: Arie van den Berg, berg@geo.uu.nl
  • Received Date: 25 Feb 2014
  • Accepted Date: 27 Sep 2014
  • Publish Date: 01 Jan 2015
  • Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable software. Today modelling these dynamical processes entails the solving of the governing equations involving the mass, momentum, energy and chemical transport. These equations represent partial differential equations and must be solved on powerful enough computers because they require sufficient spatial and temporal resolution to be useful. We describe here the salient and outstanding features of the SEPRAN software package, developed in the Netherlands, as a case study for a robust and user-friendly software, which the geological community can utilize in handling many thermal-mechanical-chemical problems found in geology, which will include geothermal situations, where many types of partial differential equations must be solved at the same time with thermodynamical input parameters.

     

  • loading
  • Asgari, A., Moresi, L. N., 2012. Multiscale Particle-in-Cell Method: From Fluid to Solid Mechanics. In: Jones, S., ed., Advanced Methods for Practical Applications in Fluid Mechanics. InTech, Croatia. 185-208. doi: 10.5772/26419
    Chertova, M. V., Geenen, T., van den Berg, A., et al., 2012. Using Open Sidewalls for Modelling Self-Consistent Lithosphere Subduction Dynamics. Solid Earth, 3: 313-326 doi: 10.5194/se-3-313-2012
    Christensen, U. R., Yuen, D. A., 1984. The Interaction of a Subducting Lithospheric Slab with a Chemical or Phase Boundary. J. Geophys. Res. , 89: 4389-4402 doi: 10.1029/JB089iB06p04389
    Cizkova, H., van den Berg, A., Spakman, P., et al., 2012. The Viscosity of Earths Lower Mantle Inferred from Sinking Speed of Subducted Lithosphere. Phys. Earth Planet. Inter. , 200: 56-62 http://www.sciencedirect.com/science/article/pii/S0031920112000374
    Cuvelier, C., Segal, A., van Steenhoven, A. A., 1986. Finite Element Methods and Navier-Stokes Epuations. D. Reidel Publishing Company, Dordrecht
    de Smet, J. H., van den Berg, A., Vlaar, N. J., et al., 2000. A Characteristics-Based Method for Solving the Transport Equation and Its Application to the Process of Mantle Differentiation and Continental Root Growth. Geophys. J. Int., 140: 651-659 doi: 10.1046/j.1365-246X.2000.00993.x
    de Vries, J., 2012. Lunar Evolution-A Combined Numerical Modelling and HPT Experimental Study: [Dissertation]. Utrecht University, Utrecht
    de Vries, J., van den Berg, A., van Westrenen, W., 2010. Formation and Evolution of a Lunar Core from Ilmenite-Rich Magma Ocean Cumulates. Earth Planet. Sci. Lett. , 292: 139-147 doi: 10.1016/j.epsl.2010.01.029
    Geenen, T., Ur Rehman, M., MacLachlan, S. P., et al., 2009. Scalable Robust Solvers for Unstructured FE Geodynamic Modeling Applications: Solving the Stokes Equation for Models with Large Localized Viscosity Contrasts. Geochemistry, Geophysics, Geosystems, 10(9): Q09002. doi: 10.1029/2009GC002526
    Gross, L., Bourgouin, L., Hale, A. J., et al., 2007. Interface Modeling in Incompressible Media Using Level Sets in Escript. Phys. Earth Planet. Inter. , 163: 23-34 doi: 10.1016/j.pepi.2007.04.004
    Hillebrand, B., Thieulot, C., Geenen, T., et al., 2014. Using the Level Set Method in Geodynamical Modeling of Multi-Material Flows and Earth's Free Surface. Solid Earth, 6: 1523-1554 http://www.ingentaconnect.com/content/doaj/18699510/2014/00000005/00000002/art00037
    Hofmeister, A. M., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Life-Times. Science, 283: 1699-1706 doi: 10.1126/science.283.5408.1699
    Jacobs, M. H. G., van den Berg, A., 2011. Complex Phase Distribution and Seismic Velocity Structure of the Transition Zone: Convection Model Predictions for a Magnesium- Endmember Olivine-Pyroxene Mantle. Phys. Earth Planet. Inter., 186: 36-48 doi: 10.1016/j.pepi.2011.02.008
    Kronbichler, M., Heister, T., Bangerth, W., 2012. High Accuracy Mantle Convection Simulation through Modern Numerical Methods. Geophys. J. Int., 191: 12-29 doi: 10.1111/j.1365-246X.2012.05609.x
    Lin, S. C., van Keken, P. E., 2006. Dynamics of Thermochemical Plumes: 1. Plume Formation and Entrainment of a Dense Layer. Geochemistry, Geophysics, Geosystems, 7(2): Q02006. doi: 10.1029/2005GC001071
    Malevsky, A. V., Yuen, D. A., 1991. Characteristics-Based Methods Applied to Infinite Prandtl Number Thermal Convection in the Hard Turbulent Regime. Phys. Fluids A, 3: 2105-2115 doi: 10.1063/1.857893
    Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations. Phys. Fluids, 7: 2154-2162 doi: 10.1063/1.868465
    Moresi, L. N., Quenette, S., Lemiale, V., et al., 2007. Computational Approaches to Studying Non-Linear Dynamics of the Crust and Mantle. Phys. Earth Planet. Inter., 163: 69-82 doi: 10.1016/j.pepi.2007.06.009
    Schott, B., van den Berg, A. P., Yuen, D. A., 2001. Focussed Time-Dependent Martian Volcanism from Chemical Differentiation Coupled with Variable Thermal Conductivity. Geophys. Res. Lett. , 28: 4271 doi: 10.1029/2001GL013638
    Sewell, G., 2005. The Numerical Solution of Ordinary and Partial Differential Equations. Wiley and Sons
    Snyder, G. A., Taylor, L. A., Neal, C. R., 1992. A Chemical Model for Generating the Source of Mare Basalts: Combined Equilibrium and Fractional Crystallization of the Lunar Magmasphere. Geochim. Cosmochim. Acta, 56(10): 3809-3823 doi: 10.1016/0016-7037(92)90172-F
    Thieulot, C., 2014. ELEFANT: A User-Friendly Multipurpose Geodynamics Code. Solid Earth, 6: 1949-2096.
    Umemoto, K., Wentzcovitch, R. M., Allen, P. B., 2006. Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets. Science, 311: 983-986 doi: 10.1126/science.1120865
    Ur Rehman, M., Vuik, C., Segal, G., 2008. A Comparison of Preconditioners for Incompressible Navier Stokes Solvers. International Journal for Nuivierical Methods in Fluids, 57: 1731-1751 doi: 10.1002/fld.1684
    van den Berg, A. Rainey, E. S. G., Yuen, D. A., 2005. The Combined Influences of Variable Thermal Conductivity, Temperature- and Pressure-Dependent Viscosity and Core- Mantle Coupling on Thermal Evolution. Phys. Earth Planet. Inter. , 149: 259-278 doi: 10.1016/j.pepi.2004.10.008
    van den Berg, A., van Keken, P. E., Yuen, D. A., 1993. The Effects of a Composite Non-Newtonian and Newtonian Theology Mantle Convection. Geophys. J. Int., 115: 62-78 doi: 10.1111/j.1365-246X.1993.tb05588.x
    van den Berg, A., Yuen, D. A., Beebe, G. L., et al. 2010. The Dynamical Impact of Electronic Thermal Conductivity on Deep Mantle Convection of Exosolar Planets. Phys. Earth Planet. Inter. , 178: 136-154 doi: 10.1016/j.pepi.2009.11.001
    van den Berg, A., Yuen, D. A., Umemoto, K., et al., 2012. EGU2012-3491-3, 2012 EGU General Assembly. Geophysical Research Abstracts, 14
    van Hunen, J., van den Berg, A., 2008. Plate Tectonics on the Early Earth: Limitations Imposed by Strength and Buoyancy of Subducted Lithosphere. Lithos, 103: 217-235 doi: 10.1016/j.lithos.2007.09.016
    van Kan, J., Segal, A., Vermolen, F., 2005. Numerical Methods in Scientific Computing. VSSD, Delft
    van Keken, P. E., King, S. D., Schmeling, H., et al., 1997. A Comparison of Methods of the Modeling of Thermochemical Convection. J. Geophys. Res. , 102(22): 477-495 doi: 10.1029/97JB01353
    van Keken, P. E., Spiers, C. J., van den Berg, A., et al., 1993. The Effective Viscosity of Rocksalt: Implementation of Steady-State Creep Laws in Numerical Models of Salt Diapirism. Tectonophysics, 225: 457-476 doi: 10.1016/0040-1951(93)90310-G
    van Summeren, J. R. G., van den Berg, A., van der Hilst, R. D., 2009. Upwellings from a Deep Mantle Reservoir Filtered at the 660 km Phase Transition in Thermo-Chemical Convection Models and Implications for Intra-Plate Volcanism. Phys. Earth Planet. Inter. , 172: 210-224 doi: 10.1016/j.pepi.2008.09.011
    van Thienen, P., van Summeren, J., van der Hilst, R. D., et al., 2005. Numerical Study of the Origin and Stability of Chemically Distinct Reservoirs Deep in Earth's Mantle. In: van der Hilst, R. D., Bass, J. D., Matas, J., et al., eds., Earth's Deep Mantle, Structure, Composition, and Evolution. Geophysical Monograph, 160: 117-136
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(982) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return