Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Anne M. Hofmeister, Robert E. Criss. Evaluation of the Heat, Entropy, and Rotational Changes Produced by Gravitational Segregation during Core Formation. Journal of Earth Science, 2015, 26(1): 124-133. doi: 10.1007/s12583-015-0509-z
Citation: Anne M. Hofmeister, Robert E. Criss. Evaluation of the Heat, Entropy, and Rotational Changes Produced by Gravitational Segregation during Core Formation. Journal of Earth Science, 2015, 26(1): 124-133. doi: 10.1007/s12583-015-0509-z

Evaluation of the Heat, Entropy, and Rotational Changes Produced by Gravitational Segregation during Core Formation

doi: 10.1007/s12583-015-0509-z
More Information
  • Corresponding author: Anne M. Hofmeister, hofmeist@wustl.edu
  • Received Date: 26 Feb 2014
  • Accepted Date: 04 Jul 2014
  • Publish Date: 01 Jan 2015
  • Core formation by gravitational segregation allegedly released sufficient interior heat to melt the Earth. Analysis of the energetics, which compare gravitational potential energy (Ug) of a fictitious, homogeneous reference state to Earth's current layered configuration, needs updating to correct errors and omissions, and to accommodate recent findings: (1) An erroneous positive sign was used forUg while maintaining the reference value of 0 at infinity, which results in an incorrect sign for ΔUg, which is crucial in determining whether a process is endothermic or exothermic. (2) The value of Ug for Earth's initial state is uncertain. (3) Recent meteorite evidence indicates that core formation began before the Earth was full-sized, which severely limits ΔUg. (4) Inhomogeneous accretion additionally reduced ΔUg. (5) The potentially large effect of differential rotation between the core and the mantle was not accounted for. (6) Entropy changes associated with creating order were neglected. Accordingly, we revise values of Ug, evaluate uncertainties, and show that ΔUg was converted substantially to configurational energy (TΔS). These considerations limit the large sources of primordial heat to impacts and radioactivity. Although these processes may play a role in core formation, their energies are independent of gravitational segregation, which produces order and rotational energy, not internal heat. Instead, gravitational segregation promotes planetary cooling mainly because it segregates lithophilic radioactive elements upward, increasing surface heat flux while shortening the distance over which radiogenic heat diffuses outwards.

     

  • loading
  • Anderson, D. L., 2007. New Theory of the Earth. Cambridge University Press, Cambridge. 366
    Birch, F., 1965. Energetics of Core Formation. Journal of Geophysical Research, 70: 6217-6221 doi: 10.1029/JZ070i024p06217
    Boehler, R., 2001. High-Pressure Experiments and the Phase Diagram of Lower Mantle and Core Materials. Reviews of Geophysics, 38: 221-245 doi: 10.1029/1998RG000053
    Brearly, A. J., Jones, R. H., 1998. Chondritic Meteorites. Reviews in Mineralogy, 36: 1-398
    Chandrasekhar, S., 1939. An Introduction to the Study of Stellar Structure. University of Chicago Press, Chicago
    Dehant, V., Creager, K. C., Karato, S. I., et al., 2003. Earth's Core: Dynamics, Structure, Rotation. American Geophysical Union, Washington D.C. . 5-82
    Dziewonski, A., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25: 297-356 doi: 10.1016/0031-9201(81)90046-7
    Eddington, A. S., 1916. The Kinetic Energy of a Star Cluster. Monthly Notices of the Royal Astronomical Society, 76: 525-528 doi: 10.1093/mnras/76.6.525
    Emden, R., 1907. Gaskuglen-Anwendungen de Mechanischen Wärmetheorie. B. G. Teubner, Leipzig
    Flasar, F. M., Birch, F., 1973. Energetics of Core Formation: A Correction. Journal of Geophysical Research, 78: 6101-6103 doi: 10.1029/JB078i026p06101
    Flory, P. J., 1941. Thermodynamics of High Polymer Solutions. Journal of Chemical Physics, 9: 660
    Galimov, E. M., 2005. Redox Evolution of the Earth Caused by a Multi-Stage Formation of Its Core. Earth and Planetary Science Letters, 233: 263-276 doi: 10.1016/j.epsl.2005.01.026
    Henderson, G., 1982. Inorganic Geochemistry. Permagon Press, New York
    Hofmeister, A. M., 2010. Scale Aspects of Heat Transport in the Diamond Anvil Cell, in Spectroscopic Modeling, and in Earth's Mantle. Physics of the Earth and Planetary Interiors, 180: 138-147 doi: 10.1016/j.pepi.2009.12.006
    Hofmeister, A. M., Criss, R. E., 2012a. A Thermodynamic Model for Formation of the Solar System via 3-Dimensional Collapse of the Dusty Nebula. Planetary and Space Science, 62: 111-131 doi: 10.1016/j.pss.2011.12.017
    Hofmeister, A. M., Criss, R. E., 2012b. Origin of HED Meteorites from the Spalling of Mercury: Implications for the Formation and Composition of the Inner Planets. In: Lim, H. S., ed., New Achievements in Geoscience. InTech, Croatia. 153-178
    Hofmeister, A. M., Criss, R. E., 2013. Earth's Interdependent Thermal, Structural, and Chemical Evolution. Gondwana Research, 24: 490-500 doi: 10.1016/j.gr.2013.02.009
    Huggins, M. L., 1941. Solutions of Long Chain Compounds. Journal of Chemical Physics, 9: 440
    Keesing, R. G., 1986. Lost Work and the Entropy of Mixing. European Journal of Physics, 7: 266-268 doi: 10.1088/0143-0807/7/4/009
    Kleine, T., Touboul M., Bourdon, B., et al., 2009. Hf-W Chronology of the Accretion and Early Evolution of Asteroids and Terrestrial Planets. Geochimica et Cosmochimica Acta, 73: 5150-5188 doi: 10.1016/j.gca.2008.11.047
    Lathe, R., 2006. Early Tides: Response to Varga et al. . Icarus, 180: 277-280 doi: 10.1016/j.icarus.2005.08.019
    Li, J., Agee, C. B., 1996. Geochemistry of Mantle-Core Differentiation at High Pressure. Nature, 381: 686-689 doi: 10.1038/381686a0
    Lieb, E. H., Yngvason, J., 2003. The Entropy of Classical Thermodynamics. In: Greven, A., Keller, A., Warnecke, G., eds., Entropy. Princeton University Press, Princeton, NJ. 147-197
    Lodders, K., 2000. An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets. Space Science Review, 92: 341-354 doi: 10.1023/A:1005220003004
    Lynden-Bell, D., Lynden-Bell, R. M., 1977. On the Negative Specific Heat Paradox. Monthly Notices of the Royal Astronomical Society, 181: 405-419 doi: 10.1093/mnras/181.3.405
    Müller, I., 2003. Entropy: A Subtle Concept in Thermodynamics. In: Greven, A., Keller, A., Warnecke, G., eds., Entropy. Princeton University Press, Princeton, NJ. 17-36
    Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post-Perovskite Phase Transition in MgSiO3. Science, 306: 855-858 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=304/5672/855
    Nordstrom, D. K., Munoz, J. L., 1986. Geochemical Thermodynamics. Blackwell Scientific, Palo Alto, CA
    Pippard, A. B., 1974. The Elements of Classical Thermodynamics. Cambridge University Press, London. 165
    Reif, F., 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill Book Company, St. Louis. 651
    Rubie, D. C., Nimmo, F., Melosh, H. J., 2007. Formation of Earth's core. In: Stevenson, D. J., ed., Treatise in Geophysics, the Core. 9: 51-90
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge
    Sherwood, B. A., Bernard, W. H., 1984. Work and Heat Transfer in the Presence of Sliding Friction. American Journal of Physics, 52: 1001-1007 doi: 10.1119/1.13775
    Shi, C. Y., Zhang, L., Yang, W., et al., 2013. Formation of an Interconnected Network of Iron Melt at Earth's Lower Mantle Conditions. Nature Geoscience, 6: 971-975 doi: 10.1038/ngeo1956
    Stacey, F. D., Stacey, C. H. B., 1998. Gravitational Energy of Core Evolution: Implications for Thermal History and Geodynamo Power. Physics of the Earth and Planetary Interiors, 110: 83-93 http://www.sciencedirect.com/science/article/pii/S0031920198001411
    Stevenson, D. J., 1990. Fluid Dynamics of Core Formation. In: Newsom, H. E., Jones, J. H., eds., Origin of the Earth. Oxford University Press, New York; Lunar and Planetary Institute, Houston, TX. 231-249
    Swendson, R. H., 2008. Gibbs' Paradox and the Definition of Entropy. Entropy, 10: 15-18 doi: 10.3390/entropy-e10010015
    Van Schmus, W. R., 1985. Natural Radioactivity of the Crust and Mantle. In: Ahrens, T. J., ed., Global Earth Physics. American Geophysical Union, Washington D.C. . 283-291
    Wald, R. N., 2001. The Thermodynamics of Black Holes. Living Rev. Relativity, 4: No. 6. doi: 10.12942/lrr-2001-6
    Wallace, D., 2010. Gravity, Entropy and Cosmology: In Search of Clarity. British Journal of Philosophical Science, 61: 513-540 doi: 10.1093/bjps/axp048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(502) PDF downloads(186) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return