Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Peter Mora, Yucang Wang, Fernando Alonso-Marroquin. Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems—A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy. Journal of Earth Science, 2015, 26(1): 11-19. doi: 10.1007/s12583-015-0516-0
Citation: Peter Mora, Yucang Wang, Fernando Alonso-Marroquin. Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems—A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy. Journal of Earth Science, 2015, 26(1): 11-19. doi: 10.1007/s12583-015-0516-0

Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems—A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy

doi: 10.1007/s12583-015-0516-0
More Information
  • Corresponding author: Peter Mora, wolop2008@gmail.com
  • Received Date: 16 Jun 2014
  • Accepted Date: 27 Oct 2014
  • Publish Date: 01 Feb 2015
  • Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle—the coupling of the lattice solid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

     

  • loading
  • Abe, S., Mora, P., 2003. Efficient Implementation of Complex Particle Shapes in the Lattice Solid Model. Lecture Notes in Computer Science, 2659: 883-891 doi: 10.1007/3-540-44863-2_87
    Abe, S., Mora, P., Place, D., 2000. Extension of the Lattice Solid Model to Incorporate Temperature Related Effects. Pure Appl. Geophys. , 157: 1867-1887 doi: 10.1007/PL00001065
    Abe, S., Place, D., Mora, P., 2004. A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics. Pure Appl. Geophys. , 161(11-12): 2265-2277 doi: 10.1007/s00024-004-2562-x
    Alonso-Marroquin, F., Pena, A., Mora, P., et al., 2007. Simulation of Shear Bands Using a Discrete Model with Polygonal Particles. Discrete Element Methods Conference, Brisbane. 6-11
    Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., et al., 2006. The Effect of Rolling on Dissipation in Fault Gouges. Phys. Rev. E. , 74(1): 031306 http://europepmc.org/abstract/MED/17025622
    Alonso-Marroquín, F., Wang, Y. C., 2009. An Efficient Algorithm for Granular Dynamics Simulations, with Complex-Shaped Objects. Granular Matter, 11: 317-329 doi: 10.1007/s10035-009-0139-1
    Chen, S., Doolen, G., 1998. Lattice Boltzmann Method for Fluid Flows. Anu. Rev. Fluid Mech. , 30: 329-364 doi: 10.1146/annurev.fluid.30.1.329
    Gingold, R. A., Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc. , 181: 375-389 doi: 10.1093/mnras/181.3.375
    Guo, Z., Zheng, C., Shi, B., et al., 2007. Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model. Phys. Rev. E, 75(3): 036704 doi: 10.1103/PhysRevE.75.036704
    He, X., Chen, S., Doolen, G. D., 1998. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comp. Phys. , 146: 282-300 doi: 10.1006/jcph.1998.6057
    Hung, L. H., Yang, J. Y., 2011. A Coupled Lattice Boltzmann Model for Thermal Flows. IMA J. Appl. Math. , 76(5): 774-789 doi: 10.1093/imamat/hxr010
    Khanal, M., Schubert, W., Tomas, J., 2008. Compression and Impact Loading Experiments of High Strength Spherical Composites. Int. J. Miner. Process, 86: 104-113 doi: 10.1016/j.minpro.2007.12.001
    Komoróczi, A., Abe, S., Urai, J. L., 2013. Meshless Numerical Modeling of Brittle-Viscous Deformation: First Results on Boudinage and Hydrofracturing Using a Coupling of Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH). Comput. Geosci. , 17: 373-390 doi: 10.1007/s10596-012-9335-x
    Latham, S., Abe, S., Mora, P., 2005. Parallel 3D Simulation of a Fault Gouge Using the Lattice Solid Model. Pure Appl. Geophys. , 163(9): 1949-1964
    Mair, K., Abe, S., 2008. 3D Numerical Simulations of Fault Gouge Evolution during Shear: Grain Size Reduction and Strain Localization. Earth and Planetary Science Letters, 274(1-2): 72-81 doi: 10.1016/j.epsl.2008.07.010
    Mora, P., 1992. A Lattice Solid Model for Rock Rheology and Tectonics. In: The Seismic Simulation Project Tech. Rep., Institut de Physique du Globe, Paris. 4: 3-28
    Mora, P., Place, D., 1993. A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes. Int. J. of Modern Phys. C, 4: 1059-1074 doi: 10.1142/S0129183193000823
    Mora, P., Place, D., 1994. Simulation of the Frictional Stick-Slip Instability. Pure Appl. Geophys. , 143: 61-87 doi: 10.1007/BF00874324
    Mora, P., Place, D., 1998. Numerical Simulation of Earthquake Faults with Gouge: Towards a Comprehensive Explanation for the Heat Flow Paradox. J. Geophys. Res. , 103: 21067-21089 doi: 10.1029/98JB01490
    Mora, P., Place, D., 1999. The Weakness of Earthquake Faults. Geophys. Res. Lett. , 26: 123-126 doi: 10.1029/1998GL900231
    Mora, P., Place, D., 2002. Stress Correlation Function Evolution in Lattice Solid Elasto-Dynamic Models of Shear and Fracture Zones and Earthquake Prediction. Pure Appl. Geophys. , 159: 2413-2427 doi: 10.1007/s00024-002-8741-8
    Mora, P., Place, D., Abe, S., et al., 2000. Lattice Solid Simulation of the Physics of Earthquakes: The Model, Results and Directions. In: Rundle, J. B., Turcotte, D. L., Klein, W., eds., GeoComplexity and the Physics of Earthquakes (Geophysical Monograph Series 120). American Geophys. Union, Washington D.C. . 105-125
    Mora, P., Place, D., Zeng, Y., 1997. The Effect of Gouge on Fault Strength and Dynamics. In: Proc. Symposium on Localization Phenomena and Granular Systems, Earth Institute/ Lamont-Doherty Earth Observatory. Columbia University, New York. 67-73
    Mora, P., Wang, Y. C., Yin, C., et al., 2002. Simulation of the Load-Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model. Pure Appl. Geophys. , 159: 2525-2536 doi: 10.1007/s00024-002-8746-3
    Place, D., Lombard, F., Mora, P., et al., 2002. Simulation of the Micro-Physics of Rocks Using LSMearth. Pure Appl. Geophys. , 159: 1911-1932 doi: 10.1007/s00024-002-8715-x
    Place, D., Mora, P., 1999. The Lattice Solid Model to Simulate the Physics of Rocks and Earthquakes: Incorporation of Friction. J. Comp. Phys. , 1502: 332-372 http://www.sciencedirect.com/science/article/pii/S0021999199961843
    Place, D., Mora, P., 2000. Numerical Simulation of Localisation Phenomena in a Fault Zone. Pure Appl. Geophys. , 157: 1821-1845 doi: 10.1007/PL00001063
    Place, D., Mora, P., 2001. A Random Lattice Solid Model for Simulation of Fault Zone Dynamics and Fracture Process. In: Muhlhaus, H. B., Dyskin, A. V., Pasternak, E., eds., Bifurcation and Localization Theory for Soil and Rock'99. AA Balkema, Rotterdam/Brookfield
    Wang, Y. C., 2009. A New Algorithm to Model the Dynamics of 3-D Bonded Rigid Bodies with Rotations. Acta Geotechnica, 4: 117-127 doi: 10.1007/s11440-008-0072-1
    Wang, Y. C., Abe, S., Latham, S., et al., 2006. Implementation of Particle-Scale Rotation in the 3D Lattice Solid Model. Pure Appl. Geophys. , 163: 1769-1785 doi: 10.1007/s00024-006-0096-0
    Wang, Y. C., Alonso-Marroquin, F., 2008. DEM Simulation of Rock Fragmentation and Size Distribution under Quasi-Static and Dynamic Loading Conditions. In: The first Southern Hemisphere International Rock Mechanics Symposium. The Australian Centre for Geomechanics, Perth. 16-19
    Wang, Y. C., Alonso-Marroquin, F., 2009. A Finite Deformation Method for Discrete Modeling: Particle Rotation and Parameter Calibration. Granular Matter, 11: 331-343 doi: 10.1007/s10035-009-0146-2
    Wang, Y. C., Mora, P., 2008a. Elastic Properties of Regular Lattices. J. Mech. Phys. Solids, 56: 3459-3474 doi: 10.1016/j.jmps.2008.08.011
    Wang, Y. C., Mora, P., 2008b. Modelling Wing Crack Extension: Implications to the Ingredients of Discrete Element Model. Pure Appl. Geophys. , 165: 609-620 doi: 10.1007/s00024-008-0315-y
    Wang, Y. C., Mora, P., 2009. ESyS-Particle: A New 3-D Discrete Element Model with Single Particle Rotation. In: Xing, H. L., ed., Advances in Geocomputing. Springer. 183-228
    Xing, H. L., Mora, P., 2006. Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project. Pure Appl. Geophys. , 163: 2297-2316 doi: 10.1007/s00024-006-0127-x
    Yu, D., Mei, R., Luo, L., et al., 2003. Viscous Flow Computations with the Method of Lattice Boltzmann Equation. Proc. Aerospace Sci. , 39: 329-367 http://www.sciencedirect.com/science/article/pii/S0376042103000034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(858) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return