Abe, S., Mora, P., 2003. Efficient Implementation of Complex Particle Shapes in the Lattice Solid Model. Lecture Notes in Computer Science, 2659: 883-891 doi: 10.1007/3-540-44863-2_87 |
Abe, S., Mora, P., Place, D., 2000. Extension of the Lattice Solid Model to Incorporate Temperature Related Effects. Pure Appl. Geophys. , 157: 1867-1887 doi: 10.1007/PL00001065 |
Abe, S., Place, D., Mora, P., 2004. A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics. Pure Appl. Geophys. , 161(11-12): 2265-2277 doi: 10.1007/s00024-004-2562-x |
Alonso-Marroquin, F., Pena, A., Mora, P., et al., 2007. Simulation of Shear Bands Using a Discrete Model with Polygonal Particles. Discrete Element Methods Conference, Brisbane. 6-11 |
Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., et al., 2006. The Effect of Rolling on Dissipation in Fault Gouges. Phys. Rev. E. , 74(1): 031306 http://europepmc.org/abstract/MED/17025622 |
Alonso-Marroquín, F., Wang, Y. C., 2009. An Efficient Algorithm for Granular Dynamics Simulations, with Complex-Shaped Objects. Granular Matter, 11: 317-329 doi: 10.1007/s10035-009-0139-1 |
Chen, S., Doolen, G., 1998. Lattice Boltzmann Method for Fluid Flows. Anu. Rev. Fluid Mech. , 30: 329-364 doi: 10.1146/annurev.fluid.30.1.329 |
Gingold, R. A., Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc. , 181: 375-389 doi: 10.1093/mnras/181.3.375 |
Guo, Z., Zheng, C., Shi, B., et al., 2007. Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model. Phys. Rev. E, 75(3): 036704 doi: 10.1103/PhysRevE.75.036704 |
He, X., Chen, S., Doolen, G. D., 1998. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comp. Phys. , 146: 282-300 doi: 10.1006/jcph.1998.6057 |
Hung, L. H., Yang, J. Y., 2011. A Coupled Lattice Boltzmann Model for Thermal Flows. IMA J. Appl. Math. , 76(5): 774-789 doi: 10.1093/imamat/hxr010 |
Khanal, M., Schubert, W., Tomas, J., 2008. Compression and Impact Loading Experiments of High Strength Spherical Composites. Int. J. Miner. Process, 86: 104-113 doi: 10.1016/j.minpro.2007.12.001 |
Komoróczi, A., Abe, S., Urai, J. L., 2013. Meshless Numerical Modeling of Brittle-Viscous Deformation: First Results on Boudinage and Hydrofracturing Using a Coupling of Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH). Comput. Geosci. , 17: 373-390 doi: 10.1007/s10596-012-9335-x |
Latham, S., Abe, S., Mora, P., 2005. Parallel 3D Simulation of a Fault Gouge Using the Lattice Solid Model. Pure Appl. Geophys. , 163(9): 1949-1964 |
Mair, K., Abe, S., 2008. 3D Numerical Simulations of Fault Gouge Evolution during Shear: Grain Size Reduction and Strain Localization. Earth and Planetary Science Letters, 274(1-2): 72-81 doi: 10.1016/j.epsl.2008.07.010 |
Mora, P., 1992. A Lattice Solid Model for Rock Rheology and Tectonics. In: The Seismic Simulation Project Tech. Rep., Institut de Physique du Globe, Paris. 4: 3-28 |
Mora, P., Place, D., 1993. A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes. Int. J. of Modern Phys. C, 4: 1059-1074 doi: 10.1142/S0129183193000823 |
Mora, P., Place, D., 1994. Simulation of the Frictional Stick-Slip Instability. Pure Appl. Geophys. , 143: 61-87 doi: 10.1007/BF00874324 |
Mora, P., Place, D., 1998. Numerical Simulation of Earthquake Faults with Gouge: Towards a Comprehensive Explanation for the Heat Flow Paradox. J. Geophys. Res. , 103: 21067-21089 doi: 10.1029/98JB01490 |
Mora, P., Place, D., 1999. The Weakness of Earthquake Faults. Geophys. Res. Lett. , 26: 123-126 doi: 10.1029/1998GL900231 |
Mora, P., Place, D., 2002. Stress Correlation Function Evolution in Lattice Solid Elasto-Dynamic Models of Shear and Fracture Zones and Earthquake Prediction. Pure Appl. Geophys. , 159: 2413-2427 doi: 10.1007/s00024-002-8741-8 |
Mora, P., Place, D., Abe, S., et al., 2000. Lattice Solid Simulation of the Physics of Earthquakes: The Model, Results and Directions. In: Rundle, J. B., Turcotte, D. L., Klein, W., eds., GeoComplexity and the Physics of Earthquakes (Geophysical Monograph Series 120). American Geophys. Union, Washington D.C. . 105-125 |
Mora, P., Place, D., Zeng, Y., 1997. The Effect of Gouge on Fault Strength and Dynamics. In: Proc. Symposium on Localization Phenomena and Granular Systems, Earth Institute/ Lamont-Doherty Earth Observatory. Columbia University, New York. 67-73 |
Mora, P., Wang, Y. C., Yin, C., et al., 2002. Simulation of the Load-Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model. Pure Appl. Geophys. , 159: 2525-2536 doi: 10.1007/s00024-002-8746-3 |
Place, D., Lombard, F., Mora, P., et al., 2002. Simulation of the Micro-Physics of Rocks Using LSMearth. Pure Appl. Geophys. , 159: 1911-1932 doi: 10.1007/s00024-002-8715-x |
Place, D., Mora, P., 1999. The Lattice Solid Model to Simulate the Physics of Rocks and Earthquakes: Incorporation of Friction. J. Comp. Phys. , 1502: 332-372 http://www.sciencedirect.com/science/article/pii/S0021999199961843 |
Place, D., Mora, P., 2000. Numerical Simulation of Localisation Phenomena in a Fault Zone. Pure Appl. Geophys. , 157: 1821-1845 doi: 10.1007/PL00001063 |
Place, D., Mora, P., 2001. A Random Lattice Solid Model for Simulation of Fault Zone Dynamics and Fracture Process. In: Muhlhaus, H. B., Dyskin, A. V., Pasternak, E., eds., Bifurcation and Localization Theory for Soil and Rock'99. AA Balkema, Rotterdam/Brookfield |
Wang, Y. C., 2009. A New Algorithm to Model the Dynamics of 3-D Bonded Rigid Bodies with Rotations. Acta Geotechnica, 4: 117-127 doi: 10.1007/s11440-008-0072-1 |
Wang, Y. C., Abe, S., Latham, S., et al., 2006. Implementation of Particle-Scale Rotation in the 3D Lattice Solid Model. Pure Appl. Geophys. , 163: 1769-1785 doi: 10.1007/s00024-006-0096-0 |
Wang, Y. C., Alonso-Marroquin, F., 2008. DEM Simulation of Rock Fragmentation and Size Distribution under Quasi-Static and Dynamic Loading Conditions. In: The first Southern Hemisphere International Rock Mechanics Symposium. The Australian Centre for Geomechanics, Perth. 16-19 |
Wang, Y. C., Alonso-Marroquin, F., 2009. A Finite Deformation Method for Discrete Modeling: Particle Rotation and Parameter Calibration. Granular Matter, 11: 331-343 doi: 10.1007/s10035-009-0146-2 |
Wang, Y. C., Mora, P., 2008a. Elastic Properties of Regular Lattices. J. Mech. Phys. Solids, 56: 3459-3474 doi: 10.1016/j.jmps.2008.08.011 |
Wang, Y. C., Mora, P., 2008b. Modelling Wing Crack Extension: Implications to the Ingredients of Discrete Element Model. Pure Appl. Geophys. , 165: 609-620 doi: 10.1007/s00024-008-0315-y |
Wang, Y. C., Mora, P., 2009. ESyS-Particle: A New 3-D Discrete Element Model with Single Particle Rotation. In: Xing, H. L., ed., Advances in Geocomputing. Springer. 183-228 |
Xing, H. L., Mora, P., 2006. Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project. Pure Appl. Geophys. , 163: 2297-2316 doi: 10.1007/s00024-006-0127-x |
Yu, D., Mei, R., Luo, L., et al., 2003. Viscous Flow Computations with the Method of Lattice Boltzmann Equation. Proc. Aerospace Sci. , 39: 329-367 http://www.sciencedirect.com/science/article/pii/S0376042103000034 |