Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 2
Apr 2015
Turn off MathJax
Article Contents
Li Tian, Jinnan Tong, David Bottjer, Daoliang Chu, Lei Liang, Huyue Song, Haijun Song. Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China. Journal of Earth Science, 2015, 26(2): 166-180. doi: 10.1007/s12583-015-0523-1
Citation: Li Tian, Jinnan Tong, David Bottjer, Daoliang Chu, Lei Liang, Huyue Song, Haijun Song. Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China. Journal of Earth Science, 2015, 26(2): 166-180. doi: 10.1007/s12583-015-0523-1

Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China

doi: 10.1007/s12583-015-0523-1
More Information
  • Corresponding author: Jinnan Tong, jntong@cug.edu.cn
  • Received Date: 12 Sep 2014
  • Accepted Date: 15 Feb 2015
  • Publish Date: 01 Apr 2015
  • Various environmental changes were associated with the Permian-Triassic mass extinction at 252.2 Ma. Diverse unusual sediments and depositional phenomena have been uncovered as responses to environmental and biotic changes. Lithological and detailed conodont biostratigraphic correlations within six Permian-Triassic boundary sections in South China indicate rapid fluctuations in carbonate deposition. Four distinct depositional phases can be recognized: (1) normal carbonate deposition on the platform and slope during the latest Permian; (2) reduced carbonate deposition at the onset of the main extinction horizon; (3) expanded areas of carbonate deposition during the Hindeodus changxingsensis Zone to the H. parvus Zone; and (4) persistent mud-enriched carbonate deposition in the aftermath of the Permian-Triassic transition. Although availability of skeletal carbonate was significantly reduced during the mass extinction, the increase in carbonate deposition did not behave the same way. The rapid carbonate depositional changes, presented in this study, suggest that diverse environmental changes played key roles in the carbonate deposition of the Permian-Triassic mass extinction and onset of its aftermath. An overview of hypotheses to explain these changes implies enhanced terrestrial input, abnormal ocean circulation and various geobiological processes contributed to carbonate saturation fluctuations, as the sedimentary response to large volcanic eruptions.

     

  • loading
  • Algeo, T. J., Chen, Z. Q., Fraiser, M. L., et al., 2011. Terrestrial- Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 1-11. doi: 10.1016/j.palaeo.2011.01.011
    Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023-1026. doi: 10.1130/G31203
    Baud, A., Richoz, S., Marcoux, J., 2005. Calcimicrobial Cap Rocks from the Basal Triassic Units: Western Taurus Occurrences (SW Turkey). Comptes Rendus Palevol, 4(6-7): 569-582. doi: 10.1016/j.crpv.2005.03.001
    Baud, A., Richoz, S., Pruss, S. B., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1-3): 81-89. doi: 10.1016/j.gloplacha.2006.06.008
    Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmosphereic O2 and CO2. Geochimica et Cosmoschimica Acta, 70(23): 5653-5664. doi: 10.1016/j.gca.2005.11.032
    Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic boundary Sections: A Complex Anoxic Event and its Relationship to Contemporaneous Mass Extinction. GSA Bulletin, 122(7-8): 1265-1279. doi: 10.1130/B30042.1
    Bottjer, D. J., Clapham, M. E., Fraiser, M. L., et al., 2008. Understanding Mechanisms for the end-Permian Mass Extinction and the Protracted Early Triassic Aftermath and Recovery. GSA Today, 18(9): 4-10. doi: 10.1130/GSATG8A.1
    Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316-3321. doi: 10.1073/pnas.1 317692111
    Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., et al., 1992. Synchronism of the Siberian Traps and the Permian- Triassic Boundary. Science, 258(5089): 1760-1763. doi: 10.1126/science.258.5089.1760
    Coale, K. H., Fitzwater, S. E., Gordon, R. M., et al., 1996. Control of Community Growth and Export Production by Upwelled Iron in the Equatorial Pacific Ocean. Nature, 379: 621-624. doi: 10.1038/379621a0
    Collin, P., Kershaw, S., Crasquin-Soleau, S., et al., 2009. Facies Changes and Diagenetic Processes across the Permian-Triassic Boundary Event Horizon, Great Bank of Guizhou, South China: A Controversy of Erosion and Dissolution. Sedimentology, 56(3): 677-693. doi: 10.1111/j.1365-3091.2008.00992.x
    Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the end-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. doi: 10.1016/j.palaeo.2013.09.001
    De Baar, H. J. W., De Jong, J. T. M., Bakker, D. C. E., et al., 1995. Importance of Iron for Plankton Blooms and Carbon Dioxide Drawdown in the Southern Ocean. Nature, 373: 412-415. doi: 10.1038/373412a0
    Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367: 231-236. doi: 10.1038/367231a0
    Georgiev, S., Stein, H. J., Hannah, J. L., et al., 2011. Hot Acidic Late Permian Seas Stifle Life in Record Time. Earth and Planetary Science Letters, 310(3-4): 389-400. doi: 10.1016/j.epsl.2011.08.010
    Greene, S. E., Martindale, R. C., Ritterbush, K. A., et al., 2012. Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic-Jurassic Boundary. Earth-Science Reviews, 113(1-2): 72-93. doi: 10.1016/j.earscirev.2012.03.009
    Grice, K., Cao, C., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710): 706-709. doi: 10.1126/science.1104323
    Grotzinger, J. P., Knoll, A. H., 1995. Anomalous Carbonate Precipitates: Is the Precambrian the Key to the Permian? Palaios, 10(6): 578-596 doi: 10.2307/3515096
    He, L., Wang, Y. B., Woods, A., et al., 2013. An Oxygenation Event Occurred in Deep Shelf Settings Immediately after the end-Permian Mass Extinction in South China. Global and Planetary Change, 101: 72-81. doi: 10.1016/j.gloplacha.2012.12.008
    Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for end-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. doi:0.1130/G33048.1
    Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. doi: 10.1126/science.1208277
    Isozaki, Y., 1997. Permo-Triassic Boundary Superanoxia and Stratified Superocean Records from Lost Deep Sea. Science, 276(5310): 235-238. doi: 10.1126/science.276.5310.235
    Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55: 39-55. doi: 10.1016/j.gloplacha.2006.06.007
    Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the end-Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. doi: 10.1007/s12583-014-044-4
    Joachimski, M. M., Lai, X. L., Shen, S. Z., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195-198. doi: 10.1130/G32707.1
    Kaiho, K., Kaiiwara, Y., Chen, Z. Q., et al., 2006. A Sulfur Isotope Event at the End of the Permian. Chemical Geology, 235(1-2): 33-47. doi: 10.1016/j.chemgeo.2006.06.001
    Kempe, S., 1990. Alkalinity: The Link between Anaerobic Basins and Shallow Water Carbonates? Naturwissenschaften, 77(9): 426-427. doi: 10.1007/BF01135940
    Kershaw, S., Crasquin, S., Li, Y., et al., 2012. Ocean Acidification and the end-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis? Geosciences, 2(4): 221-234. doi: 10.3390/geosciences2040221
    Kershaw, S., Li, Y., Crasquin-Soleau, S., et al., 2007. Earliest Triassic Microbialites in the South China Block and Other Areas: Controls on their Growth and Distribution. Facies, 53: 409-425. doi: 10.1007/s10347-007-0105-5
    Kidder, D. L., Worsley, T. R., 2004. Causes and Consequences of Extreme Permo-Triassic Warming to Globally Equable Climate and Relation to the Permian-Triassic Extinction and Recovery. Palaeogeography, Palaeoclimatology, Palaeoecology, 203(3-4): 207-237. doi: 10.1016/S0031-0182(03)00667-9
    Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273(5274): 452-457. doi: 10.1126/science.273.5274.452
    Knoll, A. H., Bambach, R. K., Payne, J. L., et al., 2007. Paleophysiology and end-Permian Mass Extinction. Earth and Planetary Science Letters, 256(3-4): 295-313. doi: 10.1016/j.epsl.2007.02.018
    Korte, C., Kozur, H. W., Bruckschen, P., et al., 2003. Strotium Isotope Evolution of Late Permian and Triassic Seawater. Geochimica et Cosmochimica Acta, 67(1): 47-62. doi: 10.1016/S0016-7037(02)01035-9
    Kump, L. R., 1991. Interpreting Carbon Isotope Excursions: Strangelove Oceans. Geology, 19(4): 299-302. doi:10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2
    Kump, L. R., Bralower, T. J., Ridgwell, A., 2009. Ocean Acidification in Deep Time. Oceanography, 22: 94-107. doi: 10.5670/oceanog.2009.100
    Lehrmann, D. J., Wei, J. Y., Enos, P., 1998. Controls on Facies Architecture of a Large Triassic Carbonate Platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China. Journal of Sedimentary Research, 68(2): 311-326. doi: 10.2110/jsr.68.311
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. doi: 10.1126/science.1182369
    Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Condition Following the end-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105: 102-120. doi: 10.1016/j.gloplacha.2011.09.009
    Li, F., Yan, J. X., Chen, Z. Q., et al., 2014. Global Oolite Deposits across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Imeediately after the end-Permian Biocrisis. Earth-Science Reviews, in review
    Liao, W., Wang, Y. B., Kershaw, S., et al., 2010. Shallow-Marine Dysoxia across the Permian-Triassic Boundary: Evidence from Pyrite Framboids in the Microbialite in South China. Sedimentary Geology, 232(1-2): 77-83. doi: 10.1016/j.sedgeo.2010.09.019
    Luo, G. M., Kump, L. R., Wang, Y. B., et al., 2010. Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following end-Permian Mass Extinction. Earth and Planetary Science Letters, 300(1-2): 101-111. doi: 10.1016/j.epsl.2010.09.041
    Luther, G. W., Church, T. M., Powell, D., 1991. Sulfur Speciation and Sulfide Oxidation in the Water Column of the Black Sea. Deep-Sea Research, 38 (Suppl. 2): S1121-S1137 http://www.sciencedirect.com/science/article/pii/S0198014910800275
    Metcalfe, I., Nicoll, R. S., Wardlaw, B. R., 2007. Conodont Index Fossil Hindeodus changxingensis Wang Fingers Greatest Mass Extinction Event. Palaeoworld, 16(1-3): 202-207. doi: 10.1016/j.palwor.2007.01.001
    Meyer, K. M., Yu, M., Jost, A. B., et al., 2011. δ13C Evidence that High Primary Productivity Delayed Recovery from end-Permian Mass Extinction. Earth and Planetary Science Letters, 302(3-4): 378-384. doi: 10.1016/j.epsl.2010.12.033
    Pace, M. L., Knauer, G. A., Karl, D. M., et al., 1987. Primary Production, New Production and Vertical Flux in the Eastern Pacific Ocean. Nature, 325: 803-804. doi: 10.1038/325803a0
    Payne, J. L., Clapham, M. E., 2012. end-Permian Mass Extinction in the Ocean: An Ancient Analog for the Twenty-First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. doi: 10.1146/annurev-earth-042711-105329
    Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. GSA Bulletin, 119(7-8): 771-784. doi: 10.1130/B26091.1
    Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the end-Permian Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8543-8548. doi: 10.1073/pnas.0914065107
    Peters, S. E., 2008. Environmental Determinants of Extinction Selectivity in the Fossil Record. Nature, 454: 626-629. doi: 10.1038/nature07032
    Pietsch, C., Bottjer, D. J., 2014. The Importance Oxygen for the Disparate Recovery Patterns of the Benthic Macrofauna in the Early Triassic. Earth-Science Reviews, 137: 65-84. doi: 10.1016/j.earscirev.2013.12.002
    Pruss, S. B., Bottjer, D. J., Corsetti, F. A., et al., 2006. A Global Marine Sedimentary Response to the end-Permian Mass Extinction: Examples from Southern Turkey and the Western United States. Earth-Science Reviews, 78(3-4): 193-206. doi: 10.1016/j.earscirev.2006.05.002
    Rampino, M. R., Caldeira, K., 2005. Major Perturbation of Ocean Chemistry and a 'Strangelove Ocean' after the end-Permian Mass Extinction. Terra Nova, 17(6): 554-559. doi: 10.1111/j.1365-3121.2005.00648.x
    Raup, D. M., 1979. Size of the Permo-Triassic Bottleneck and Its Evolutionary Implications. Science, 206(4415): 217-218. doi: 10.1126/science.206.4415.217
    Sedlacek, A. R. C., Saltzman, M. R., Algeo, T. J., et al., 2014. 87Sr/86Sr Stratigraphy from the Early Triassic of Zal, Iran: Linking Temperature to Weathering Rates and the Tempo of Ecosystem Recovery. Geology, 42(9): 779-782. doi: 10.1130/G35545.1
    Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the end-Permian Mass Extinction. Science, 334(6061): 1367-1372. doi: 10.1126/science.1213454
    Shen, W. J., Lin, Y. T., Xu, L., et al., 2007. Pyrite Framboids in the Permian-Triassic Boundary Section at Meishan, China: Evidence for Dysoxic Deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 253: 323-331. doi: 10.1016/j.palaeo.2007.06.005
    Shen, Y. A., Farquhar, J., Zhang, H., et al., 2011. Multiple S-Isotopic Evidence for Episodic Shoaling of Anoxic Water during Late Permian Mass Extinction. Nature Communications, 2(210): 210-214. doi: 10.1038/ncomms1217
    Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012b. The Large Increase of δ13C carb-Depth Gradient and the end-Permian Mass Extinction. Science China: Earth Sciences, 55: 1101-1109. doi: 10.1007/s11430-012-4416-1
    Song, H. J., Wignall, P. B., Chen, Z. Q., et al., 2011. Recovery Tempo and Pattern of Marine Ecosystems after the end-Permian Mass Extinction. Geology, 39(8): 739-742. doi: 10.1130/G32191.1
    Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(4132): 4132. doi: 10.1038/srep04132
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012a. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with end-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353-354: 12-21. doi: 10.1016/j.epsl.2012.07.005
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6: 52-56. doi: 10.1038/NGEO1649
    Song, H. Y., Tong, J. N., Algeo, T. J., et al., 2013. Large Vertical 13CDIC Gradients in Early Triassic Seas of the South China Craton: Implications for Oceanographic Changes Related to Siberian Traps Volcanism. Global and Planetary Change, 105: 7-20. doi: 10.1016/j.gloplacha.2012.10.023
    Song, H. Y., Tong, J. N., Algeo, T. J., et al., 2014. Early Triassic Seawater Sulfate Drawdown. Geochimica et Cosmochimica Acta, 128: 95-113. doi: 10.1016/j.gca.2013.12.009
    Suess, E., 1980. Particulate Organic Carbon Flux in the Oceans-Surface Productivity and Oxygen Utilization. Nature, 288: 260-263. doi: 10.1038/288260a0
    Sun, D. Y., Tong, J. N., Xiong, Y. L., et al., 2012. Conodont Biostratigraphy and Evolution across Permian-Triassic Boundary at Yangou Section, Leping, Jiangxi Province, South China. Journal of Earth Science, 23(3): 311-325. doi: 10.1007/s12583-012-0255-4
    Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338: 366-370. doi: 10.1126/science.1224126
    Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the end-Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. doi: 10.1016/j.epsl.2008.11.015
    Takeda, S., 1998. Influence of Iron Availability on Nutrient Consumption Ration of Diatoms in Oceanic Waters. Nature 393: 774-777. doi: 10.1038/31674
    Tian, L., Tong, J. N., Algeo, T. J., et al., 2014a. Reconstruction of Early Triassic Ocean Redox Conditions Based on Framboidal Pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 68-79. doi: 10.1016/j.palaeo.2014.07.018
    Tian, L., Tong, J. N., Sun, D. Y., et al., 2014b. The Microfacies and Sedimentary Responses to the Mass Extinction during the Permian-Triassic Transition at Yangou Section, Jiangxi Province, South China. Science China: Earth Sciences, 57(9): 2195-2207. doi: 10.1007/s11430-014-4869-5
    Tian, S. F., Chen, Z. Q., Huang, C. J., 2014. Orbital Forcing and Sea-Level Changes in the Earliest Triassic of the Meishan Section, South China. Journal of Earth Science, 25(1): 64-73. doi: 10.1007/s12583-014-0400-3
    Wang, G. Q., Xia, W. C., 2004. Conodont Zonation across the Permian-Triassic Boundary at the Xiakou Section, Yichang City, Hubei Province and Its Correlation with the Global Stratotype Section and Point of the PTB. Canada Journal of Earth Science, 41: 323-330. doi: 10.1139/E04-008
    Wang, Q. X., Tong, J. N., Song, H. J., et al., 2009. Ecological Evolution across the Permian/Triassic Boundary at the Kangjiaping Section in Cili County, Hunan Province, China. Science in China Series D: Earth Sciences, 52: 797-806. doi: 10.1007/s11430-009-0077-0
    Wang, Y. B., Tong, J. N., Wang, J. S., et al., 2005. Calcimicrobialite after end-Permian Mass Extinction in South China and Its Palaeoenvironmental Significance. Chinese Science Bulletin, 50(7): 665-671 doi: 10.1360/982004-323
    Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1-2): 1-33. doi: 10.1016/S0012-8252(00)00037-4
    Wignall, P. B., Kershaw, S., Collin, P., et al., 2009. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events: Comment. GSA Bulletin, 121(5-6): 954-956. doi: 10.1130/B26424.1
    Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155
    Wignall, P. B., Twitchett, R. J., 2002. Extent, Duration, and Nature of the Permian-Triassic Superanoxic Event. In: Keoberl, C., Macleod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper, 356: 395-414
    Woods, A. D., 2014. Assessing Early Triassic Palaeoceanorgraphic Conditions via Unusual Sedimentary Fabrics and Features. Earth-Science Reviews, 137: 6-18. doi:10.1016/j.earscirev. 2013.08.015
    Woods, A. D., Bottjer, D. J., Mutti, M., et al., 1999. Lower Triassic Large Seafloor Carbonate Cements: Their Origin and a Mechanism for the Prolonged Biotic Recovery from the end-Permian Mass Extinction. Geology, 27: 645-648. doi:10.1130/009-7613(1999)027<0645:LTLSFC>2.3.CO;2.
    Xie, S. C., Pancost, R. D., Huang, X. Y., et al., 2007. Molecular and Isotopic Evidence for Episodic Environmental Change across the Permo/Triassic Boundary at Meishan in South China. Global and Planetary Change, 55: 56-65. doi: 10.1016/j.gloplacha.2006.06.016
    Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 m. y. Permo-Triassic Biotic Crisis. Geology, 38(5): 447-450. doi: 10.1130/G30769.1
    Yang, H., Chen, Z. Q., Wang, Y. B., et al., 2011. Composition and Structure of Microbialite Ecosystems Following the end-Permian Mass Extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 111-123. doi: 10.1016/j.palaeo.2010.05.029
    Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The end-Permian Regression in South China and its Implication on Mass Extinction. Earth-Science Reviews, 137: 19-33. doi: 10.1016/j.earscierev.2013.06.003
    Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114 doi: 10.18814/epiiugs/2001/v24i2/004
    Zeebe, R. E., Westbroek, P., 2003. A Simple Model for the CaCO3 Saturation State of the Ocean: The "Strangelove" the "Neritan" and the "Cretan" Ocean. Geochemistry, Geophysics, Geosystems, 4(12): e1104. doi: 10.1029/2003GC000538
    Zhang, K. X., Tong, J. N., Yin, H. F., et al., 1996. Sequence Stratigraphy of the Permian-Triassic Boundary Section of Chiangxing, Zhejiang. Acta Geologica Sinica, 48(3): 474-486 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE199603008.htm
    Zhang, Y., Zhang, K. X., Shi, G. R., et al., 2014. Restudy of Conodont Biostratigraphy of the Permian-Triassic Boundary Section in Zhongzhai, Southwestern Guizhou Province, South China. Journal of Asian Earth Sciences, 80: 75-83. doi: 10.1016/j.jseaes.2013.10.032
    Zheng, Q. F., 2006. Sedimentary Microfacies and Sequence Stratigraphy of the P-T Boundary Beds of the Meishan Section, Changing County, Zhejiang. Journal of Stratigraphy, 30(4): 373-385 (in Chinese with English Abstract) http://www.researchgate.net/publication/292758479_Sedimentary_microfacies_and_sequence_stratigraphy_of_the_P-T_boundary_beds_of_the_Meishan_section_Changxing_County
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(707) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return