Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 2
Apr 2015
Turn off MathJax
Article Contents
Igor' V. Kemkin, Raisa A. Kemkina. Depositional Environment of Cherts of the Sikhote-Alin Region (Russia Far East): Evidence from Major, Trace and Rare Earth Elements Geochemistry. Journal of Earth Science, 2015, 26(2): 259-272. doi: 10.1007/s12583-015-0531-1
Citation: Igor' V. Kemkin, Raisa A. Kemkina. Depositional Environment of Cherts of the Sikhote-Alin Region (Russia Far East): Evidence from Major, Trace and Rare Earth Elements Geochemistry. Journal of Earth Science, 2015, 26(2): 259-272. doi: 10.1007/s12583-015-0531-1

Depositional Environment of Cherts of the Sikhote-Alin Region (Russia Far East): Evidence from Major, Trace and Rare Earth Elements Geochemistry

doi: 10.1007/s12583-015-0531-1
More Information
  • Corresponding author: Igor' V. Kemkin, kemkin@fegi.ru
  • Received Date: 18 Oct 2014
  • Accepted Date: 15 Mar 2015
  • Publish Date: 01 Apr 2015
  • The first data of geochemical study of the Benevka Section cherty rocks belonging to the Taukha terrane of the Sikhote-Alin Late Jurassic-Early Cretaceous accretionary prism,Russia Far East are presented. These data demonstrate essential distinctions of major,trace and rare earth element concentrations in different parts of the measured stratigraphic section. The lower chert horizons exhibit high Fe2O3 and MnO contents,low concentrations of Al2O3 and TiO2,relatively high V/Y ratio,and extremely low value of negative Ce anomaly. In contrast the upper horizons composed of clayey cherts and siliceous mudstones are characterized by high Al2O3,TiO2 and K2O contents,low Fe2O3 and MnO values,low V/Y ratio,and slightly negative Ce anomaly. In the middle part of the Benevka Section,in which cherts gradually changed to clayey cherts,intermediate geochemical characteristics are present. Based on these data obtained the depositional environments correspond to proximal to the spreding ridge,open-ocean and near continental margin regimes were successfully reconstructed from bottom to top of the Benevka Section,that indicate that significant horizontal movement took place of the sea-floor,on which the cherts were deposited.

     

  • loading
  • Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance and Indication of Ocean Ridge Activity. Sediment Geol, 47: 125–148 doi: 10.1016/0037-0738(86)90075-8
    Barcelo, D., 2003. Comprehensive Analytical Chemistry. Volume XLI. Elsevier Science. Amsterdam, the Netherlands. 1286
    Berger, W. H., Winterer, E. L., 1974. Plate Stratigraphy and Fluctuating Carbonate Line. In: Hsu, K. J., Jehkyns, H., eds., Pelagic Sediments on Land and under the Sea. International Association of Sedimentologists, Special Publication, 1: 11–48 doi: 10.1002/9781444304855.ch2/pdf
    Bersenev, I. I., 1969. Geology of the USSR. Primorye Region. Part 1. Nedra, Moskva. 690
    Bragin, N. Y., 1991. Radiolarians and Low Mesozoic Strata of the East USSR. Academiya Nauk SSSR, Moskva. 125
    Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113: 67–88 doi: 10.1016/0025-3227(93)90150-T
    Chen, D., Qing, H., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3–4): 203–216 doi: 10.1016/j.sedgeo.2005.09.020
    Dubinin, A. V., 2006. Geochemistry of Rare-Earth Elements in an Ocean. Nauka, Moskva. 310
    Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296: 2–219 doi: 10.1038/296002a0
    Elderfield, H., Hawkesworth, C. J., Greaves, M. J., et al., 1981. Rare Earth Element Geochemrstry of Oceanic Ferromanganese Nodules and Associated Sediments. Geochimica et Cosmochimica Acta, 45: 513–528 doi: 10.1016/0016-7037(81)90184-8
    Emerson, S. R., Huested, S. S., 1991. Ocean Anoxia and the Concentration of Molybdenum and Vanadium in Seawater. Marine Chemistry, 34: 177–196 doi: 10.1016/0304-4203(91)90002-E
    Engebretson D.C., Cox A., Gordon R.G. 1985. Relative Motion between Oceanic and Continental Plates in the Pacific Basin. Bull Geol. Soc. Amer. , 206: 1–59 http://www.researchgate.net/publication/36291992_Relative_Motions_Between_Oceanic_and_Continental_Plates_in_the_Pacific_Basin
    German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5: 823–833 doi: 10.1029/PA005i005p00823
    Gromet, L. P., Dymek, R. F., Haskin, L. A., et al., 1984. The "North American Shale Composite", Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48: 2469–2482 doi: 10.1016/0016-7037(84)90298-9
    Isozaki, Y., Maruyama, S., Furuoka, F., 1990. Accreted Oceanic Materials in Japan. Tectonophysics, 181(1–2): 179–205 http://www.sciencedirect.com/science/article/pii/0040195190900162
    Kakuwa, Y., Matsumoto, R., 2006. Cerium Negative Anomaly just before the Permian and Triassic Boundary Event—the Upward Expansion of Anoxia in the Water Column. Palaeogeography, Palaeoclimatology, Palaeoecology, 229: 335–344 doi: 10.1016/j.palaeo.2005.07.005
    Kametaka, M., Takebe, M., Nagai, H., et al., 2005. Sedimentary Environments of the Middle Permian Phosphorite —Chert Complex from the Northeastern Yangtze Platform, China; the Gufeng Formation: A Continental Shelf Radiolarian Chert. Sedimentary Geology, 174: 197–222 doi: 10.1016/j.sedgeo.2004.12.005
    Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182: 15–34 doi: 10.1016/S0009-2541(01)00273-X
    Kato, Y., Ohta, I., Tsunematsu, T., et al., 1998. Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochimica et Cosmochimica Acta, 62(21–22): 3475–3497 doi: 10.1016/S0016-7037(98)00253-1
    Kato, Y., Yamaguchi, K., Ohmoto, H., 2006. Rare Earth Elements in Precambrian Banded Iron Formations: Secular Changes of Ce and Eu Anomalies and Evolution of Atmospheric Oxygen. In: Kesler, S., Ohmoto, H., eds., Evolution of the Atmosphere, Hydrosphere, and Biosphere on Early Earth: Constraints from Ore Deposits. Geological Society of America Monograph, 198: 269–289 http://www.researchgate.net/publication/278918042_Rare_earth_elements_in_Precambrian_banded_iron_formations_Secular_changes_of_Ce_and_Eu_anomalies_and_evolution_of_atmospheric_oxygen
    Kazachenko, V. T., Perevoznikova, E. V., Lavrik, S. N., et al., 2012. Role of Ophiolites in Metallogeny of the Sikhote-Alin. Doklady of Russian Akademy of Sciences, 444(4): 412–416 doi: 10.1134/S1028334X12060037
    Kemkin, I. V., 2006, Geodynamic Evolution of the Sikhote-Alin and Sea of Japan Region in Mesozoic. Nauka, Moskva. 258
    Kemkin, I. V., Filippov, A. N., 2001. Structure and Genesis of Lower Structural Unit of the Samarka Jurassic Accretionary Prism (Sikhote-Alin, Russia). Geodiversitas, 23(3): 323–339 http://www.researchgate.net/publication/228769928_Structure_and_genesis_of_the_lower_structural_unit_of_the_Samarka_Jurassic_accretionary_prism_Sikhote-Alin_Russia
    Kemkin, I. V., Filippov, A. N., 2002. The Structure and Formation of the Samarka Accretionary Prism in Southern Sikhote-Alin. Geotektonika, 36(5): 79–88 (in Russian) http://www.researchgate.net/publication/313099259_Structure_and_formation_history_of_the_Samarka_accretionary_prism_Southern_Sikhote-Alin
    Kemkin, I. V., Golozoubov, V. V., 1996. The First Finding of the Early Jurassic Radiolaria in Cherty Allochtnons of the Samarka Accretionary Prism (South Sikhote-Alin). Tikhookeanskaya Geologiya, 15(6): 103–109 (in Russian)
    Kemkin, I. V., Kametaka, M., Kojima, S., 1999. Radiolarian Biostratigraphy for Transitional Facies of Chert-Clastic Sequence of the Taukha Terrane in the Koreyskaya River Area, Southern Sikhote-Alin, Russia. The Journal of Earth and Planetary Sciences Nagoya University, 46: 29–47 http://www.researchgate.net/publication/37505193_Radiolarian_biostratigraphy_for_transitional_facies_of_chert-clastic_sequence_of_the_Taukha_terrane_in_the_Koreyskaya_River_area_Southern_Sikhote-Alin_Russia
    Kemkin, I. V., Kametaka, M., Kojima, S., 2001. Faunal Evidence of Successive Accretion of the Taukha Terrane Paleooceanic Fragments (Southern Sikhote-Alin). Tikhookeanskaya Geologiya, 20(1): 72–84 (in Russian)
    Kemkin, I. V., Kemkina, R. A., 2000. Structure and Genesis of the Taukha Mesozoic Accretionary Prism (Southern Sikhote-Alin, Russia). Geodiversitas, 22: 481–491 http://www.researchgate.net/publication/237330028_Structure_and_genesis_of_the_Taukha_Mesozoic_accretionary_prism_southern_Sikhote-Alin_Russia
    Kemkin, I. V., Kemkina, R. А., 1998. Jurassic-Early Cretaceous Biostratigraphy of Chert-Terrigenous Deposits of Dalnegorsk Ores District (South Sikhote-Alin). Tikhookeanskaya Geologiya, 17: 59–76 (in Russian)
    Kemkin, I. V., Roudenko, V. S., 1998. New Data on Chert Age of the Samarka Accretionary Prism, Southern Sikhote-Alin. Tikhookeanskaya Geologiya, 17(4): 22–31 (in Russian) http://www.researchgate.net/publication/288946883_New_data_on_chert_age_of_the_Samarka_accretionary_prism_southern_Sikhote-Alin
    Kemkin, I. V., Roudenko, V. S., Taketani, Y., 1997. Some Jurassic and Early Cretaceous Radiolarians from Chert-Terrigenous Sequence of the Taukha Terrane, Southern Sikhote-Alin. The Memoirs of the Geological Society of Japan, 48: 163–175 http://www.researchgate.net/publication/309347005_Some_Jurassic_and_Early_Cretaceous_radiolarians_from_chert-terrigenous_sequence_of_the_Taukha_Terrane_southern_Sikhote-Alin
    Kemkin, I. V., Taketani, Y., 2008. Structure and Age of Lower Structural Unit of the Taukha Terrane of Late Jurassic–Early Cretaceous Accretionary Prism, Southern Sikhote-Alin. The Island Arc, 17(4): 517–530 doi: 10.1111/j.1440-1738.2008.00630.x
    Khanchuk, A. I., 2006. Geodynamics, Magmatism and Metallogeny of East of Russia. Book 1. Dal'nauka, Vladivostok. 572 (in Russian)
    Khanchuk, A. I., Kemkin, I. V., 2003. Geodynamic Evolution of Sea of Japan Region in Mesozoic. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 6: 99–116 (in Russian)
    Khanchuk, A. I., Kemkin, I. V., Panchenko, I. V., 1989a. Geodynamic Evolution of the South Far East in Middle Paleozoic–Early Mesozoic. In: Shouldiner, V. I., ed., Pacific Margin of Asia. Geology, 1: 218–255 (in Russian) http://ci.nii.ac.jp/naid/10004120993
    Khanchuk, A. I., Nikitina, A. P., Panchenko, I. V., et al., 1989b. Paleozoic and Mesozoic Guyots of the Sikhote-Alin and Sakhalin. Doklady Academy of Sciences of USSR, 307(1): 186–190 (in Russian) http://www.researchgate.net/publication/283920246_Paleozoic_and_Mesozoic_guyots_of_Sikhote-Alin_and_Sakhalin
    Liu, Y. G., Miah, M. R. U., Schmitt, R. A., 1988. Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions. Geochimica et Cosmochimica Acta, 52: 1361–1371 doi: 10.1016/0016-7037(88)90207-4
    Liu, Y. G., Schmitt, R. A., 1984. Chemical Profiles in Sediment and Basalt Samples from DSDP Leg 74. Hole 525A. Walvis Ridge. Initial. Reports of DSDP, 74: 713–730
    Lyons, T., Werne, J. P., Hollander D. J., et al., 2003. Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 195: 131–157 doi: 10.1016/S0009-2541(02)00392-3
    MacLeod, K. G., Irving, A. J., 1996. Correlation of Cerium Anomalies with Indicators of Paleoenvironment. Journal of Sedimentary Research, 66: 948–955
    Matsuda, T., Isozaki, Y., 1991. Well-Documented Travel History of Mesozoic Pelagic Chert in Japan: From Remote Ocean to Subduction Zone. Tectonics, 10(2): 475–499 doi: 10.1029/90TC02134
    Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63: 1735–1750 doi: 10.1016/S0016-7037(99)00126-X
    Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90: 213–232 doi: 10.1016/0037-0738(94)90039-6
    Murray, R. W., Buchholtz ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55: 1875–1895 doi: 10.1016/0016-7037(91)90030-9
    Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., et al., 1990. Rare Earths Elements as Indicator of Different Marine Depositional Environments in Chert and Shale. Geology, 18: 268–272 doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
    Popov, N. P., Stolyarova, I. N., 1974. Chemical Analysis of Rocks and Minerals. Nedra, Moscow. 248 (in Russian)
    Ruhlin, D. E., Owen, R. M., 1986. The Rare Earth Element Geochemistry of Hydrothermal Sediments from the East Pacific Rise: Examination of a Seawater Scavenging Mechanism. Geochimica et Cosmochimica Acta, 50: 393–400 doi: 10.1016/0016-7037(86)90192-4
    Shimizu, H., Masuda, A., 1977. Cerium in Chert as an Indication of Marine Environment of Its Formation. Nature, 266: 346–348 doi: 10.1038/266346a0
    Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 58: 1567–1579 doi: 10.1016/0016-7037(94)90559-2
    Simanenko, V. P., Golozoubov, V. V., Kemkin I. V., 1999. Basalts of the Erdagou Suite in the Taukha Terrane of the Soutern Sikhote-Alin and Its Geodynamic Setting. Tikhookeanskaya Geologiya, 18(4): 82–90 (in Russian)
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. 312
    Thomson, J., Higgs, N. C., Croudace, I. W., et al., 1993. Redox Zonation of Elements at an Oxic/Post-Oxic Boundary in Deep-Sea Sediments. Geochimica et Cosmochimica Acta, 57: 579–595 doi: 10.1016/0016-7037(93)90369-8
    Toyoda, K., Nakamura, Y., Masuda, A., 1990. Rare Earth Elements of Pacific Pelagic Sediments. Geochimica et Cosmochimica Acta, 54: 1093–l103 doi: 10.1016/0016-7037(90)90441-M
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12–32 doi: 10.1016/j.chemgeo.2006.02.012
    Volokhin, J. G., Mikhaylik, E. V., 2008. Structure, Composition and Formation Conditions of the Middle–Late Jurassic Chert Formation. In: Zakharov, J. D., Markevich, P.V., eds., Triassic and Jurassic of the Sikhote-Alin. Dal'nauka, Vladivostok. 103–124 (in Russian)
    Volokhin, J. G., Mikhaylik, E. V., Buriy, G. I., 2003. Triassic Chert Formation of the Sikhote-Alin. Dal'nauka, Vladivostok. 252 (in Russian)
    Wright, J., Schrader, H., Holser, W. T., 1987. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochimica et Cosmochimica Acta, 51: 631–644 doi: 10.1016/0016-7037(87)90075-5
    Zhang, C., Zhou, D., Lu, G., et al., 2006. Geochemical Characteristic and Sedimentary Environments of Cherts from Kumishi Ophiolitic Mélange in Southern Tianshan. Acta Petrologica Sinica, 22(1): 57–64 (in Chinese with English Abstract) http://www.researchgate.net/publication/286982573_Geochemical_characteristics_and_sedimentary_environments_of_cherts_from_Kumishi_ophiolitic_melange_in_southern_Tianshan
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(672) PDF downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return