Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 2
Apr 2015
Turn off MathJax
Article Contents
Hao Yu, Hengye Wei. A Kungurian oceanic upwelling on Yangtze platform: Evidenced by δ13Corg and authigenic silica in the lower Chihsia Formation of Enshi Section in South China. Journal of Earth Science, 2015, 26(2): 211-218. doi: 10.1007/s12583-015-0533-z
Citation: Hao Yu, Hengye Wei. A Kungurian oceanic upwelling on Yangtze platform: Evidenced by δ13Corg and authigenic silica in the lower Chihsia Formation of Enshi Section in South China. Journal of Earth Science, 2015, 26(2): 211-218. doi: 10.1007/s12583-015-0533-z

A Kungurian oceanic upwelling on Yangtze platform: Evidenced by δ13Corg and authigenic silica in the lower Chihsia Formation of Enshi Section in South China

doi: 10.1007/s12583-015-0533-z
More Information
  • Corresponding author: Hengye Wei, hywei@ecit.edu.cn; weihengye@163.com
  • Received Date: 18 Jun 2014
  • Accepted Date: 15 Jan 2015
  • Publish Date: 01 Apr 2015
  • The Late Paleozoic Ice Age across Carboniferous and Permian had a significant impact on the Kungurian (Upper Cisuralian series of Permian) Chihsia Formation in South China. This resulted in a unique interval with features such as the lack of reef in Chihsian limestone, widespread stinkstone and nodular/bedded chert. The Chihsia limestone (Kungurian stage) deposited during a time of cooling was resulted from oceanic upwelling. Here we present evidence for this upwelling using several geochemical analyses: bulk organic carbon isotope, biomarker molecular geochemical data, and authigenic silica of the stinkstone member in the lower Chihsia Formation of the Kuangurian stage from the Enshi Section in western Hubei Province, South China. The lower part of the stinkstone member shows a rapid organic carbon isotope excursion with a −3‰ shift triggered by the upwelling of13C-depleted bottom water. The concurrent rapid increasing of authigenic silica content resulted from the enhanced supply of dissolved silica in the upwelling water mass. This upwelling at the Enshi Section also led to relative high TOC content, accounting for the widespread stinkstone in the lower Chihsia Formation during the Kungurian stage in Permian.

     

  • loading
  • Algeo, T. J., Henderson, C. M., Tong, J., et al., 2013. Plankton and Productivity during the Permian-Triassic Boundary Crisis: An Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105: 52-67 doi: 10.1016/j.gloplacha.2012.02.008
    Beauchamp, B., Baud, A., 2002. Growth and Demise of Permian Biogenic Chert along Northwest Pangea: Evidence for End-Permian Collapse of Thermohaline Circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 37-63 doi: 10.1016/S0031-0182(02)00245-6
    Berner, R. A., 2002. Examination of Hypotheses for the Permo-Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of National Academic Science (USA), 99: 4172-4177 doi: 10.1073/pnas.032095199
    Bohacs, K., Suter, J., 1997. Sequence Stratigraphic Distribution of Coaly Rocks: Fundamental Controls and Paralic Examples. American Association of Petroleum Geologists Bulletin, 81: 1612-1639 doi: 10.1306/7834e192-1721-11d7-8645000102c1865d
    Cecil, C. B., 1990. Paleoclimatic Controls on Stratigraphic Repetition of Chemical Siliciclastic Rocks. Geology, 18: 533-536 doi: 10.1130/0091-7613(1990)018<0533:PCOSRO>2.3.CO;2
    Des Marais, D. J., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359: 605-609 doi: 10.1038/359605a0
    Feng, Z. Z., Yang, Y. Q., Jin, Z. K., 1997. Lithofacies and Palaeography of the Permian of South China. Petroleum University Press, Beijing. 242 (in Chinese with Enghlish Abstract)
    Fenton, S., Grice, K., Twitchett, R. J., et al., 2007. Changes in Biomarker Abundances and Sulfur Isotopes of Pyrite across the Permian-Triassic (P/Tr) Schuchert Dal Section (East Greenland). Earth and Planetary Science Letters, 262: 230-239 doi: 10.1016/j.epsl.2007.07.033
    Fielding, C. R., Frank, T. D., Birgenheier, L. P., et al., 2008. Stratigraphic Imprint of the Late Paleozoic Ice Age in Eastern Australia: A Record of Alternating Glacial and Nonglacial Climate Regime. Journal of the Geological Society, 165: 129-140 doi: 10.1144/0016-76492007-036
    Frakes, L. A., Francis, J. E., Syktus, J. I., 1992. Climate Modes of the Phanerozoic: The History of the Earth's Climate over the Past 600 Million Years. Cambridge University Press, Cambridge. 274
    Gastaldo, R. A., DiMichele, W. A., Pfefferkorn, H. W., 1996. Out of the Icehouse into the Greenhouse: A Late Paleozoic Analogue for Modern Global Vegetational Change. GSA Today, 10: 1-7 http://www.researchgate.net/publication/251500000_Out_of_the_Icehouse_into_the_Greenhouse_A_Late_Paleozoic_Analog_for_Modern_Global_Vegetational_Change
    Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo-Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234: 207-221 doi: 10.1016/j.epsl.2005.02.027
    Hadjira, B., Wang, X., Ma, Z., et al., 2011. Preliminary Mineralogical and Geochemical Analysis on the Chihsia Formation of Tieqiao Section, Laibin, Guangxi and Their Geological Implications. Geological Science and Technology Information, 30(1): 15-19 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201101004.htm
    Hansen, H. J., 2006. Stable Isotopes of Carbon from Basaltic Rocks and Their Possible Relation to Atmospheric Isotope Excursions. Lithos, 92: 105-116 doi: 10.1016/j.lithos.2006.03.029
    Hasiotics, S. T., Honey, J. G., 2000. Paleohydrologic and Stratigraphic Significance of Crayfish Burrows in Continental Deposits: Examples from Several Paleocene Laramide Basin in the Rocky Mountains. Journal of Sedimentary Research, 70: 127-139 doi: 10.1306/2DC40904-0E47-11D7-8643000102C1865D
    Hayes, J. M., Strauss, H., Kaufman, A. J., 1999. The Abundance of 13C in Marine Organic Matter and Isotopic Fractionation in the Global Biogeochemical Cycle of Carbon during the Past 800 Ma. Chemical Geology, 161: 103-125 doi: 10.1016/S0009-2541(99)00083-2
    Heeremans, M., Larsen, B. T., Stel, H., 1996. Paleostress Reconstruction from Kinematic Indicators in the Oslo Graben, Southern Norway: New Constraints on the Mode of Rifting. Tectonophysics, 266: 55-79 doi: 10.1016/S0040-1951(96)00183-7
    Hunt, J. M., 1996. Petroleum Geochemistry and Geology, 2nd Edition. Freeman and Company, New York. 743
    Jones, A. T., Frank, T. D., Fielding, C. R., 2006. Cold Climate in the Eastern Australian Mid to Late Permian may Reflect Cold Upwelling Waters. Palaeogeography, Palaeoclimatology, Palaeoecology, 237: 370-377 doi: 10.1016/j.palaeo.2005.12.009
    Kaufman, A. J., Knoll, A. H., Narbonne, G. M., 1997. Isotopes, Ice Ages, and Terminal Proterozoic Earth History. Proceedings of the National Academy of Science (USA), 94: 6600-6660 doi: 10.1073/pnas.94.13.6600
    Kiehl, J. T., Shields, C. A., 2005. Climate Simulation of the Latest Permian: Implications for Mass Extinction. Geology, 33: 757-760 doi: 10.1130/G21654.1
    Korte, C., Kozur, H. W., 2010. Carbon-Isotope Stratigraphy across the Permian-Triassic Boundary: A Review. Journal of Asian Earth Sciences, 39: 215-235 doi: 10.1016/j.jseaes.2010.01.005
    Korte, C., Pande, P., Kalia, P., et al., 2010. Massive Volcanism at the Permian-Triassic Boundary and Its Impact on the Isotopic Composition of the Ocean and Atmosphere. Journal of Asian Earth Sciences, 37: 293-311 doi: 10.1016/j.jseaes.2009.08.012
    Kutzbach, J. E., Guetter, P. J., 1990. Simulated Circulation of an Idealized Ocean for Pangaean Time. Paleoceanography, 5: 299-317 doi: 10.1029/PA005i003p00299
    Liu, X. Y., Yan, J. X., 2007. Nodular Chert of the Permian Chihsia Formation from South China and Its Geological Implications. Acta Sedimentologica Sinica, 25: 730-736 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200705010.htm
    Lu, B. Q., Qu, J. Z., 1989. Anoxic Deposition Formed under Upwelling and Transgression during the Early Permian of South China. Chinese Science Bulletin, 35: 1193-1198
    Ma, X. H., Zhang, Z. K., 1986. Palaeomagnetism and Its Use in Search of Plate Tectonics. In: Li, C. Y., ed., On Principle Problems of Plate Tectonics. Seismology Publishing House, Beijing. 119-142 (in Chinese)
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2: 2000GC000109 doi: 10.1029/2000GC000109
    Meyer, K. M., Yu, M., Lehrmann, D., et al., 2013. Constraints on Early Triassic Carbon Cycle Dynamics from Paired Organic and Inorganic Carbon Isotope Records. Earth and Planetary Science Letters, 361: 429-435 doi: 10.1016/j.epsl.2012.10.035
    Meyers, P. A., 1997. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry, 27: 213-250 doi: 10.1016/S0146-6380(97)00049-1
    Mii, H. S., Shi, G. R., Cheng, C. J., et al., 2012. Permian Gondwanaland Paleoenvironment Inferred from Carbon and Oxygen Isotope Records of Brachiopod Fossils from Sydney Basin, Southeast Australia. Chemical Geology, 291: 87-103 doi: 10.1016/j.chemgeo.2011.10.002
    Montañez, I. P., Poulsen, C. J., 2013. The Late Paleozoic Ice Age: An Evolving Paradigm. The Annual Review of Earth and Planetary Science, 41: 629-656 doi: 10.1146/annurev.earth.031208.100118
    Olaussen, S., Larsen, B. T., Steel, R., 1994. The Upper Carboniferous-Permian Oslo Rifting: Basin Fil in Relation to Tectonic Development. In: Embry, A., ed., Pangea: Global Environments and Resources. Canadian Society of Petroleum Geology, 17: 175-197
    Popp, B. N., Parekh, P., Tilbrook, T., et al., 1997. Organic Carbon δ13C Variations in Sedimentary Rocks as Chemostratigraphic and Paleoenvironmental Tools. Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 119-132 doi: 10.1016/S0031-0182(97)00061-8
    Powell, M. G., Schöne, B. R., Dorrit, E. J., 2009. Tropical Marine Climate during the Late Paleozoic Ice Age Using Trace Element Analysis of Brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 143-149 doi: 10.1016/j.palaeo.2009.06.003
    Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116: 1-20 doi: 10.1086/524120
    Schoepfer, S. D., Henderson, C. M., Garrison, G. H., et al., 2013. Termination of a Continent-Margin Upwelling System at the Permian-Triassic Boundary (Opal Creek, Alberta, Canada). Global and Planetary Change, 105: 21-35 doi: 10.1016/j.gloplacha.2012.07.005
    Schwab, V., Spangenberg, J. E., 2004. Organic Geochemistry across the Permian-Triassic Transition at the Idrijca Valley, Western Slovenia. Applied Geochemistry, 19: 55-72 doi: 10.1016/S0883-2927(03)00127-6
    Shen, J., Algeo, T., Hu, Q., et al., 2013. Volcanism in South China during the Late Permian and Its Relationship to Marine Ecosystem and Environmental Changes. Global and Planetary Change, 105: 121-134 doi: 10.1016/j.gloplacha.2012.02.011
    Shen, S. Z., Wang, Y., Henderson, C. M., et al., 2007. Biostratigraphy and Lithofacies of the Permian System in the Laibin-Heshan Area of Guangxi, South China. Palaeoworld, 16: 120-139 doi: 10.1016/j.palwor.2007.05.005
    Shi, G. R., 1995. The Late Palaeozoic Brachiopod Genus Yakovlevia Fredericks, 1925 and the Yakovlevia Transversa Zone, Northern Yukon Territory, Canada. Proceedings of the Royal Society of Victoria, 107: 51-71 http://www.researchgate.net/publication/290806720_The_late_Palaeozoic_brachiopod_genus_Yakovlevia_Fredericks_1925_and_the_Yakovlevia_transversa_Zone_northern_Yukon_Territory_Canada
    Shi, G. R., Grunt, T. A., 2000. Permian Gondwana-Boreal Antitropicality with Special Reference to Brachiopod Faunas. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 239-263 doi: 10.1016/S0031-0182(99)00118-2
    Svensen, H., Planke, S., Malthe-Sørenssen, A., et al., 2004. Release of Methane from a Volcanic Basin as a Mechanism for Initial Eocene Global Warming. Nature, 429: 542-545 doi: 10.1038/nature02566
    Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 277: 490-500 doi: 10.1016/j.epsl.2008.11.015
    Tong, J. N., Shi, G. R., 2000. Evolution of the Permian and Triassic Foraminifera in South China. In: Yin, H. F., Dickins, J. M., Shi, G. R., et al., eds., Permian-Triassic Evolution of Tethys and Western Circum-Pacific. Elservier, Amsterdam. 291-307
    Trappe, J., 1994. Pangean Phosphorites-Ordinary Phosphorite Genesis in an Extraordinary World? Canadian Society of Petroleum Geologists, Memoir, 17: 469-478 http://www.researchgate.net/publication/313209902_Pangean_phosphorites-Ordinary_phosphorite_genesis_in_an_extraordinary_world
    Walker, B. D., Guilderson, T. P., Okimura, K. M., et al., 2014. Radiocarbon Signatures and Size-Age-Composition Relationships of Major Organic Matter Pools within a Unique California Upwelling System. Geochimica et Cosmochimica Acta, 126: 1-17 doi: 10.1016/j.gca.2013.10.039
    Wang, Y., Jin, Y. G., 1998. Permian Topographic Evolution of the Jiangnan Basin, South China. In: Retanasthien, B., Rieb, S. L., eds., Proceedings of the International Symposium on Shallow Tethys 5. Chiang Mai University Press, Chiang Mai, Thailand. 1-497
    Wei, H., Chen, D., 2011. Lithofacies Palaeogeography of the Qixia Age of Permian in Western Hubei-Northwestern Hunan Provinces. Journal of Palaeogeography, 13: 551-562 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201105015.htm
    Wei, H., Chen, D., Wang, J., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353-355: 73-86 doi: 10.1016/j.palaeo.2012.07.005
    Werne, J. P., Hollander, D. J., 2004. Balancing Supply and Demand: Controls on Carbon Isotope Fractionation in the Cariaco Basin (Venezuela) Younger Dryas to Present. Marine Chemistry, 92: 275-293 doi: 10.1016/j.marchem.2004.06.031
    Winguth, A. M. E., Heinze, C., Kutzbach, J. E., et al., 2002. Simulated Warm Polar Currents during the Middle Permian. Paleoceanography, 17(4): 911-918 doi: 10.1029/2001PA000646
    Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32: 191-215 doi: 10.1016/S0166-5162(96)00042-0
    Yan, J. X., Munnecke, A., Steuber, T., et al., 2005. Marine Sepiolite in Middle Permian Carbonates of South China: Implications for Secular Variation of Phanerozoic Seawater Chemistry. Journal of Sedimentary Research, 75: 328-338 doi: 10.2110/jsr.2005.026
    Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137: 19-33 doi: 10.1016/j.earscirev.2013.06.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(373) PDF downloads(277) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return