Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov.  2015
Turn off MathJax
Article Contents

Jincheng Luo, Ruizhong Hu, Shaohua Shi. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 2015, 17(6): 911-919. doi: 10.1007/s12583-015-0542-y
Citation: Jincheng Luo, Ruizhong Hu, Shaohua Shi. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 2015, 17(6): 911-919. doi: 10.1007/s12583-015-0542-y

Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age

doi: 10.1007/s12583-015-0542-y
  • Received Date: 2015-12-03
  • Rev Recd Date: 2015-12-03
  • Publish Date: 2015-12-03
  • Miaoershan (MES) uranium ore field is one of the most important uranium sources in China, hosts the largest Chanziping carbonaceous-siliceous-pelitic rock type uranium deposit in South China together with many other granite-hosted uranium deposits. The Shazijiang (SZJ) uranium deposit is one of the representative granite-hosted uranium deposits in the MES uranium ore field, situated in the Ziyuan, Guangxi Province, South China. Uranium mineralization in the SZJ deposit mainly occurs as uraninite with quartz and calcite veins that is spatially associated with mafic dykes in the region. The hydrothermal alteration includes silicification, carbonation and hematitization. New uraninite chemical U-Pb geochronology and petrographic evidences provide the timing constraints and new insights into the formation of the SZJ uranium deposit. The results show that the first stage of uranium mineralization formed at 97.5±4.0 Ma, whereas another stage of uranium mineralization occurred at 70.2±1.6 Ma. Two stages of uranium mineralization are fairly consistent with two episodic crustal extensions that occurred at ~100 and ~70 Ma throughout South China. This study indicates that there are two uranium mineralization events in SZJ uranium ore field controlled by mafic dyke, supporting that mafic dykes play an important topochemical role in uranium concentration and/or mobilization. Therefore, geochemical U-Pb age firstly reinforces that ore-forming age of the SZJ uranium deposit mainly yields at 97.5±4.0 and 70.2±1.6 Ma. Additionally, geochemical age method is particularly useful for interest samples which record information on multi-stage uranium mineralizations in South China
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1649) PDF downloads(321) Cited by()

Related
Proportional views

Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age

doi: 10.1007/s12583-015-0542-y

Abstract: Miaoershan (MES) uranium ore field is one of the most important uranium sources in China, hosts the largest Chanziping carbonaceous-siliceous-pelitic rock type uranium deposit in South China together with many other granite-hosted uranium deposits. The Shazijiang (SZJ) uranium deposit is one of the representative granite-hosted uranium deposits in the MES uranium ore field, situated in the Ziyuan, Guangxi Province, South China. Uranium mineralization in the SZJ deposit mainly occurs as uraninite with quartz and calcite veins that is spatially associated with mafic dykes in the region. The hydrothermal alteration includes silicification, carbonation and hematitization. New uraninite chemical U-Pb geochronology and petrographic evidences provide the timing constraints and new insights into the formation of the SZJ uranium deposit. The results show that the first stage of uranium mineralization formed at 97.5±4.0 Ma, whereas another stage of uranium mineralization occurred at 70.2±1.6 Ma. Two stages of uranium mineralization are fairly consistent with two episodic crustal extensions that occurred at ~100 and ~70 Ma throughout South China. This study indicates that there are two uranium mineralization events in SZJ uranium ore field controlled by mafic dyke, supporting that mafic dykes play an important topochemical role in uranium concentration and/or mobilization. Therefore, geochemical U-Pb age firstly reinforces that ore-forming age of the SZJ uranium deposit mainly yields at 97.5±4.0 and 70.2±1.6 Ma. Additionally, geochemical age method is particularly useful for interest samples which record information on multi-stage uranium mineralizations in South China

Jincheng Luo, Ruizhong Hu, Shaohua Shi. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 2015, 17(6): 911-919. doi: 10.1007/s12583-015-0542-y
Citation: Jincheng Luo, Ruizhong Hu, Shaohua Shi. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 2015, 17(6): 911-919. doi: 10.1007/s12583-015-0542-y

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return