Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Qiang Li, Bin Xia, Jianfeng Li, Lianze Xia, Qiangtai Huang, Zhongyu Xia. Mineral chemistry and geochemistry of peridotites from the Zedang and Luobusa ophiolites, Tibet: Implications for the evolution of the Neo-Tethys. Journal of Earth Science, 2015, 26(6): 893-910. doi: 10.1007/s12583-015-0544-9
Citation: Qiang Li, Bin Xia, Jianfeng Li, Lianze Xia, Qiangtai Huang, Zhongyu Xia. Mineral chemistry and geochemistry of peridotites from the Zedang and Luobusa ophiolites, Tibet: Implications for the evolution of the Neo-Tethys. Journal of Earth Science, 2015, 26(6): 893-910. doi: 10.1007/s12583-015-0544-9

Mineral chemistry and geochemistry of peridotites from the Zedang and Luobusa ophiolites, Tibet: Implications for the evolution of the Neo-Tethys

doi: 10.1007/s12583-015-0544-9
More Information
  • Corresponding author: Qiang Li, doctorqiang@163.com
  • Received Date: 07 Jan 2015
  • Accepted Date: 05 Jun 2015
  • Publish Date: 01 Dec 2015
  • We present a new dataset on platinum group elements (PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al2O3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting.

     

  • loading
  • Aitchison, J. C., Ba, D. Z., Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183: 231–244. doi: 10.1016/s0012-821x(00)00287-9
    Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid-Ocean Ridge and Supra-Subduction Geochemical Signatures in Spinel-Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3–4): 691–708. doi: 10.1016/j.lithos.2009.03.010
    Arai, S., Abe, N., Ishimaru, S., 2007. Mantle Peridotites from the Western Pacific. Gondwana Research, 11: 180–199. doi: 10.1016/j.gr.2006.04.004
    Bao, P. S., 2009. Further Discussion on the Genesis of the Podiform Chromite Deposits in the Ophiolites—Questioning about the Rock/Melt Interaction Metallogeny. Geological Bulletin of China, 28(12): 1741–1761 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200912009.htm
    Barnes, S. J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3–4): 303–323. doi: 10.1016/0009-2541(85)90076-2
    Bockrath, C., Ballhaus, C., Holzheid, A., 2004. Stabilities of Laurite RuS2 and Monosulfide Liquid Solution at Magmatic Temperature. Chemical Geology, 208: 265–271. doi: 10.1016/j.chemgeo.2004.04.016
    Caran, S., Coban, H., Flower, M. F. J., et al., 2010. Podiform Chromitites and Mantle Peridotites of the Antalya Ophiolite, Isparta Angle (SW Turkey): Implications for Partial Melting and Melt-Rock Interaction in Oceanic and Subduction-Related Settings. Lithos, 114(3–4): 307–326. doi: 10.1016/j.lithos.2009.09.006
    Chen, G. W., Xia, B., 2008. Platinum-Group Elemental Geochemistry of Mafic and Ultramafic Rocks from the Xigaze Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 32(2008): 406–422. doi: 10.1016/j.jseaes.2007.11.009
    Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288: 133–148. doi: 10.1016/j.chemgeo.2011.07.011
    David, A. Y., Nicola, T., Ondrej, C., 2011. Influences of Lower-Mantle Properties on the Formation of Asthenosphere in Oceanic Upper Mantle. Journal of Earth Science, 22(2): 143–154. doi: 10.1007/s12583-011-0166-9
    Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contrib. Mineral. Petrol. , 86: 54–76. doi: 10.1007/bf00373711
    Dick, H. J. B., Natland, J. H., 1995. Late Stage Melt Evolution and Transport in the Shallow Mantle beneath the East Pacific Rise. In: Mevel, C., Gillis, K. M., Allan, J. F., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 147: 103–134
    Dick, H. J. B., 1977. Partial Melting in the Josephine Peridotite-1, the Effect of Mineral Composition and Its Consequence from Geobarometry and Geothermometry. American Journal of Science, 227: 801–832. doi: 10.2475/ajs.277.7.801
    Dilek, Y., Furnes, H., Shallow, M., 2007. Supra-Subduction Zone Ophiolite Formation along the Periphery of Mesozoic Gondwana. Gondwna Research, 11: 453–475. doi: 10.1016/j.gr.2007.01.005
    Eyuboglu, Y., Dilek, Y., Bozkurt, E., et al., 2010. Structure and Geochemistry of an Alaskan-Type Mafic-Ultramafic Complex in the Eastern Pontides, NE Turkey. Gondwana Research, 18: 230–252. doi: 10.1016/j.gr.2010.01.008
    Hirose, K., Kawamoto, T., 1995. Hydrous Partial Melting of Lherzolite at 1 GPa: The Effect of H2O on the Genesis of Basaltic Magmas. Earth and Planetary Science Letters, 133(3–4): 463–473. doi: 10.1016/0012-821x(95)00096-u
    Ishii, T., Robinson, P. T., Maekawa, H., et al., 1992. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results, 125: 445–485 http://ci.nii.ac.jp/naid/10004643408
    Ishiwaka, A., Kaneko, Y., Kadarusman, A., et al., 2007. Multiple Generations of Forearc Mafic-Ultramafic Rocks in the Timor-Tanimbar Ophiolite, Eastern Indonesia. Gondwana Research, 11(1–2): 200–217. doi: 10.1016/j.gr.2006.04.007
    Jaques, A. L. Green, D. H., 1980. Anhydrous Melting of Peridotite at 0~15 kbar Pressure and the Genesis of Tholeiitic Basalts. Contrib. Mineral. Petrol. , 73: 287–310 doi: 10.1007/BF00381447
    Li, H., Liu, Q., Hou, Q. L., et al., 2011. Distribution and Fractionation of Platinum-Group Elements in Mantle Peridotites from Kedanshan Ophiolite, Inner Mongolia. Acta Petrologica Sinica, 27(6): 1759–1769 (in Chinese with English Abstract) http://www.researchgate.net/publication/287349323_Distribution_and_fractionation_of_Platinum-group_elements_in_mantle_peridotites_from_Kedanshan_ophiolite_Inner_Mongolia
    Li, Y., Yang, J. S., Liu, Z., et al., 2011. The Origins of Baer Ophiolitic Peridotite and Its Implication in the Yarlung Zangbo Suture Zone, Southern Tibet. Acta Petrologica Sinica, 27(11): 3239–3254 (in Chinese with English Abstract)
    Liang, F. H., Xu, Z. Q., Ba, D. Z., et al., 2011. Tectonic Occurrence and Emplacement Mechanism of Ophiolites from Luobusa-Zedang, Tibet. Acta Petrologica Sinica, 27(11): 3255–3268 (in Chinese with English Abstract)
    Liu, L., Zhou, J., Jiang, D., et al., 2014. Lithological Discrimination of the Mafic-Ultramafic Complex, Huitongshan, Beishan, China: Using ASTER Data. Journal of Earth Science, 25(3): 529–536. doi: 10.1007/s12583-014-0437-3
    Lorand, J. P., Luguet, A., Alard, O., 2008. Platinum-Group Elements: A New Set of Key Tracers for the Earth's Interior. Elements, 4: 247–252. doi: 10.2113/gselements.4.4.247
    Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. In: Dilek, Y., Robinsin, P. T., eds., Ophiolites in Earth History. Geological Society, London, Special Publications, 218: 147–164. doi: 10.1144/gsl.sp.2003.218.01.11
    McDermid, I., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong Terrane: A Late Jurassic Intra-Oceanic Magmatic Arc within the Yarlung-Zangbo Suture Zone, Southeastern Tibet. Chemical Geology, 187: 267–277. doi: 10.1016/s0009-2541(02)00040-2
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223–253. doi: 10.1016/0009-2541(94)00140-4
    Meisel, T., Moser, J., 2004. Reference Materials for Geochemical PGE Analysis: New Analytical Data for Ru, Rh, Pd, Os, Ir, Pt and Re by Isotope Dilution ICP-MS in 11 Geological Reference Materials. Chemical Geology, 208: 319–338. doi: 10.1016/j.chemgeo.2004.04.019
    Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135–148 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303019.htm
    Morimoto, N., 1988. Nomenclature of Pyroxene. Acta Mineralogica, 8(4): 289–305
    Ohara, Y., Ishii, T., 1998. Peridotites from the Southern Mariana Forearc: Heterogeneous Fluid Supply in Mantle Wedge. Island Arc, 7(3): 541–558. doi: 10.1111/j.1440-1738.1998.00209.x
    Pearce, J. A., Robinson, P. T., 2010. The Troodo Ophiolite Complex probably Formed in a Subduction Initiation, Slab Edge Setting. Gondwana Research, 18: 60–81. doi: 10.1016/j.gr.2009.12.003
    Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contrib. Mineral. Petrol. , 139: 36–53. doi: 10.1007/s004100050572
    Qi, L., Gao, J. F., Huang, X. W., et al., 2011. An Improved Digestion Technique for Determination of Platinum Group Elements in Geological Samples. Journal of Analytical Atomic Spectrometry, 26(9): 1900–1904. doi: 10.1039/c1ja10114e
    Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51: 507–513. doi: 10.1016/s0039-9140(99)00318-5
    Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2005. Recognition of MOR-and SSZ-Type Ophiolites in the Bangong Lake Ophiolite Melange, Western Tibet: Evidence from Two Kinds of Mantle Peridotites. Acta Petrologica et Mineralogica, 24(5): 397–408 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200505008.htm
    Sobolev, A. V., Batanova, V. G., 1995. Mantle Lherzolites of the Troodos Ophiolite Complex, Cyprus: Clinopyroxene Geochemistry. Petrology, 3: 440–448 http://www.researchgate.net/publication/292718758_Mantle_Lherzolites_of_the_Troodos_Ophiolite_Complex_Cyprus_Clinopyroxene_Geochemistry
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi: 10.1144/gsl.sp.1989.042.01.19
    Uysal, I., Ersoy, Y. E., Karsli, O., et al., 2012. Coexistence of Abyssal and Ultra-Depleted SSZ Type Mantle Peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from Mineral Composition, Whole-Rock Geochemistry (Major-Trace-REE-PGE), and Re-Os Isotope Systematic. Lithos, 132–133: 50–69. doi: 10.1016/j.lithos.2011.11.009
    Wei, D. L., Xia, B., Zhou, G. Q., et al., 2004. Lithochemical Characteristics and Origin of the Zedang Ophiolite Lava in Xizang (Tibet), China. Geotectonica et Metallogenia, 28(3): 270–278 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK200403006.htm
    Wei, D. L., Xia, B., Zhou, G. Q., et al., 2006. Sm-Nd Isochron Age of Zedang Ophiolite in Tibet and Its Significance. Acta Geoscientica Sinica, 27(1): 31–34 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200601004.htm
    Wei, D. L., Xia, B., Zhou, G. Q., et al., 2007. Geochemistry and Sr-Nd Isotope Characteristics of Tonalites in Zêtang, Tibet: New Evidence for Intra-Tethyan Subduction. Science in China Series D: Earth Sciences, 50(6): 838–846. doi: 10.1007/s11430-007-0034-8
    Xia, B., Yu, H. X., Chen, G. W., et al., 2003. Geochemistry and Tectonic Environment of the Dazhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 37: 311–324. doi: 10.2343/geochemj.37.311
    Xu, M. Q., Cai, L., Xu, W., et al., 2014. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. Journal of Earth Science, 25(2): 224–240. doi: 10.1007/s12583-014-0419-5
    Xu, X. Z., Yang, J. S., Ba, D. Z., et al., 2011a. Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4): 553–568. doi: 10.1016/j.jseaes.2011.05.007
    Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011b. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27(11): 3179–3196 (in Chinese with English Abstract) http://www.oalib.com/paper/1475863
    Xu, X. Z., Yang, J. S., Chen, S. Y., 2009. Unusual Mantle Mineral Group from Chromitite Orebody Cr-11 in Luobusa Ophiolite of Yarlung-Zangbo Suture Zone, Tibet. Journal of Earth Science, 20(2): 284–302. doi: 10.1007/s12583-009-0026-z
    Xu, Y. G., Orberger, B., Reeves, S. J., 1998. Fractionation of Platinum Group Elements in Upper Mantle: Evidence from Peridotite Xenoliths from Wangqing. Science in China Series D: Earth Sciences, 41(4): 354–361. doi: 10.1007/bf02932685
    Yang, J. S., Xiong, F. H., Guo, G. L., et al., 2011. The Dongbo Ultramafic Massif: A Mantle Peridotite in the Western Part of the Yarlung Zangbo Suture Zone, Tibet, with Excellent Prospects for a Major Chromite Deposit. Acta Petrologica Sinica, 27(11): 3207–3222 (in Chinese with English Abstract) http://www.oalib.com/paper/1474828
    Zhang, K. J., 2000. Cretaceous Palaeogeography of Tibet and Adjacent Areas (China): Tectonic Implications. Cretaceous Research, 21: 23–33. doi: 10.1006/cres.2000.0199
    Zhang, K. J., 2004. Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting. Earth and Planetary Science Letters, 229: 73–89. doi: 10.1016/j.epsl.2004.10.030
    Zhang, K. J., Xia, B. D., Liang, X. W., 2002. Mesozoic–Paleogene Sedimentary Facies and Paleogeography of Tibet, Western China: Tectonic Implications. Geological Journal, 37: 217–246. doi: 10.1002/gj.911
    Zhang, K. J., Xia, B. D., Wang, G. M., et al., 2004. Early Cretaceous Stratigraphy, Depositional Environment, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China. Geological Society of America Bulletin, 116: 1202–1222. doi: 10.1130/b25388.1
    Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114: 236–249. doi: 10.1016/j.earscirev.2012.06.001
    Zhang, K. J., Zhang, Y. X., Li, B., et al., 2007. Nd Isotopes of Siliciclastic Rocks from Tibet, Western China: Constraints on the Pre-Cenozoic Tectonic Evolution. Earth and Planetary Science Letters, 256: 604–616. doi: 10.1016/j.epsl.2007.02.014
    Zhong, L. F., Xia, B., Cui, X. J., et al., 2006a. Geochemical Characteristics and Origin of the Luobusa Ophiolite Crust Lavas in Xizang, China. Geotectonica et Metallogenia, 30(2): 231–240 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200602013.htm
    Zhong, L. F., Xia, B., Zhou, G. Q., et al., 2006b. SHRIMP Age Determination of the Diabase in Luobusa Ophiolite, Southern Xizang (Tibet). Geological Review, 52 (2): 224–229 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200602012.htm
    Zhong, L. F., 2006. Petrology, Geochemistry and Tectonic Setting of the Luobusa Ophiolite, Southern Xizang (Tibet): [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou. 1–100 (in Chinese)
    Zhou, E. B., 2011. Present Situation and Advances in the Study of Podiform Chromite Deposits. Acta Petrologica et Mineralogica, 30(3): 530–542 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201103017.htm
    Zhou, E. B., Yang, Z. S., Jiang, W., et al., 2011. Study on Mineralogy of Cr-Spinel and Genesis of Luobusa Chromite Deposit in South Tibet. Acta Petrologica Sinica, 27(7): 2060–2072 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252022700.html
    Zhou, M. F., Robinson, P. T., Malpas, J., et al., 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46: 615–639. doi: 10.1093/petrology/egh091
    Zhou, M. F., Sun, M., Keays, R. R., 1998. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites: A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62: 677–688. doi: 10.1016/s0016-7037(97)00382-7
    Zhou, S., Mo, X. X., Mahoney, J. J., et al., 2002. Geochronology and Nd and Pb Isotope Characteristics of Gabbro Dikes in the Luobusa Ophiolite, Tibet. Chinese Science Bulletin, 47(2): 143–146 http://www.springerlink.com/content/mu44626k51767274/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(2152) PDF downloads(356) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return