Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Huiqiang Yao, Huaiyang Zhou, Xiaotong Peng, Gaowen He. Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N. Journal of Earth Science, 2015, 26(6): 920-928. doi: 10.1007/s12583-015-0545-8
Citation: Huiqiang Yao, Huaiyang Zhou, Xiaotong Peng, Gaowen He. Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N. Journal of Earth Science, 2015, 26(6): 920-928. doi: 10.1007/s12583-015-0545-8

Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N

doi: 10.1007/s12583-015-0545-8
More Information
  • Corresponding author: Huiqiang Yao, hqyao@163.com; Huaiyang Zhou, zhouhy@tongji.edu.cn
  • Received Date: 17 Feb 2015
  • Accepted Date: 03 Jun 2015
  • Publish Date: 01 Dec 2015
  • High resolution sampling, for Sr isotope and REE analyses, was carried out along a transaction of L vent chimney collected from East Pacific Rise 9°N–10°N. Sr isotopes show these anhydrites are precipitated from a mixture between hydrothermal fluid and seawater. The calculated relative proportion of seawater and hydrothermal fluid shows that the mixing is heterogeneous on the transection of the L vent chimney. Anhydrites from the chimney show uniform chondrite-normalized REE pattern with enrichment of LREE and positive Eu anomaly. While normalized to the REE of end-member hydrothermal fluid, anhydrites also show uniform REE pattern but with negative Eu anomaly and enrichment of HREE. Combining previous studies on REEs of hydrothermal fluids from different hydrothermal systems and the hydrothermal fluid data from this region, we suggested that REE-anion complexing, rather than crystallography controlling, is the main factor that controls the REE partition behavior in the anhydrite during its precipitation from the mixture of hydrothermal fluid and seawater.

     

  • loading
  • Bach, W., Roberts, S, Vanko, D. A., et al., 2003. Controls of Fluid Chemistry and Complexation on the Rare-Earth Element Contents of Anhydrite from the Pacmanus Subseafloor Hydrothermal System, Manus Basin, Papua New Guinea. Mineralium Deposita, 38: 916–935, doi: 10.1007/s00126-002-0325-0
    Bao, X. S., Zhou, H. Y., Peng, X. T., et al., 2008. Geochemistry of REE and Yttrium in Hydrothermal Fluids from the Endeavour Segment, Juan de Fuca Ridge. Geochemical Journal, 42: 359–370 doi: 10.2343/geochemj.42.359
    Bischoff, J. L., Seyfried, W. E., 1978. Hydrothermal Chemistry of Seawater from 25 ℃ to 350 ℃. American Journal of Science, 278: 838–860 doi: 10.2475/ajs.278.6.838
    Bluth, G. J., Ohmoto, H., 1988. Sulfide-Sulfate Chimneys on the EPR 11° and 13° N Latitudes. Part Ⅱ: Sulfur Isotopes. Canadian Mineralogist, 26: 505–515
    Bowers, T. S., 1989. Stable Isotope Signatures of Water-Rock Interaction in Mid-Ocean Ridge Hydrothermal Systems: Sulfur, Oxygen and Hydrogen. Journal of Geophysical Research, 94: 5775–5786 doi: 10.1029/JB094iB05p05775
    Chiba, H., Uchiyama, N., Teagle, D. A. H., 1998. Stable Isotope Study of Anhydrite and Sulfide Minerals at the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 85–90
    Craddock, P. R., Bach, W., Seewald, J. S., et al., 2010. Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 74: 5494–5513 doi: 10.1016/j.gca.2010.07.003
    Ding, K., Seyfried, J. W. E., Zhang, Z., et al., 2005. The in situ pH of Hydrothermal Fluids at Mid-Ocean Ridges. Earth and Planetary Science Letters, 237(1–2): 167–174
    Douville, E., Bienvenu, P., Charlou, J. L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63(5): 627–643 doi: 10.1016/S0016-7037(99)00024-1
    Elderfield, H., 1988. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 325: 105–124
    Farrell, C. W., Holland, H. D., Petersen, U., 1978. The Isotopic Composition of Strontium in Barites and Anhydrites from Kuroko Deposits. Mining Geology, 28: 281–291
    Fornari, D. J., Shank, T., Von Damm, K. L., et al., 1998. Time-Series Temperature Measurements at High-Temperature Hydrothermal Vents, East Pacific Rise 9°49′–51′N: Evidence for Monitoring a Crustal Cracking Event. Earth and Planetary Science Letters, 160: 419–431 doi: 10.1016/S0012-821X(98)00101-0
    Graham, U. M., Bluth, G. J., Ohmoto, H., 1988. Sulfide-Sulfate Chimneys on the East Pacific Rise 11°N and 13°N, Part I: Mineralogy and Paragenesis. Canadian Mineralogist, 26: 487–504
    Haymon, R. M., Fornari, D. J., Damm, K. L. V., et al., 1993. Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45′–52′N: Direct Submersible Observations of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth and Planetary Science Letters, 119: 85–101 doi: 10.1016/0012-821X(93)90008-W
    Haymon, R. M., Fornari, D. J., Edwards, M. H., et al., 1991. Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09′–54′N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridges. Earth and Planetary Science Letters, 104(2–4): 513–534
    Herzig, P. M., Petersen, S., Hannington, M. D., 1998. Geochemistry and Sulfur-Isotopic Composition of the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 47–70
    Humphris, S. E., 1998. Rare Earth Element Composition of Anhydrite: Implications for Deposition and Mobility within the Active TAG Hydrothermal Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 143–159
    Humphris, S. E., Bach, W., 2005. On the Sr Isotope and REE Compositions of Anhydrites from the TAG Seafloor Hydrothermal System. Geochimica et Cosmochimica Acta, 69(6): 1511–1525 doi: 10.1016/j.gca.2004.10.004
    Kim, J., Lee, I., Lee, K. -Y., 2004. S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific: Evaluation of Magmatic Contribution to Hydrothermal System. Journal of Geophysical Research: Solid Earth, 109(B12): 159–163. doi: 10.1029/2003JB002912
    Klinkhammer, G. P., Chin, C. S., Wilson, C., et al., 1995. Venting from the Mid-Atlantic Ridge at 37°17′: The Lucky Strike Hydrothermal Site. In: Parson, L. M., Walker, C. L., Dixon, D. R., eds., Hydrothermal Vents and Processes. Geological Society, London, Special Publication, 87: 87–96
    Klinkhammer, G. P., Elderfield, H., Edmond, J. M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23): 5105–5113 doi: 10.1016/0016-7037(94)90297-6
    Klinkhammer, G. P., Elderfield, H., Hudson, A., 1983. Rare Earth Elements in Seawater near Hydrothermal Vents. Nature, 305: 185–188 doi: 10.1038/305185a0
    Kuhn, T., Herzig, P. M., Hannington, M. D., et al., 2003. Origin of Fluids and Anhydrite Precipitation in the Sediment-Hosted Grimsey Hydrothermal Field North of Iceland. Chemical Geology, 202: 5–21 doi: 10.1016/S0009-2541(03)00207-9
    Kusakabe, M., Chiba, H., 1979. Oxygen Isotope Geothermometry Applied to Sulfate Minerals from the Kuroko Deposits. Mining Geology, 29: 257–264
    Lin, L., Pang, Y. C., Ma, L. Y., et al., 2010. Submarine Hydrothermal/Hot Spring Deposition of Early Cambrian Niutitang Formation in South China. Journal of Earth Science, 21(1): 40–43
    Mills, R. A., Elderfried, H., 1995. Rare Earth Element Geochemistry of Hydrothermal Deposits from the Active TAG Mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3511–3524 doi: 10.1016/0016-7037(95)00224-N
    Mills, R. A., Teagle, D. A. H., Tivey, M. K., 1998. Fluid Mixing and Anhydrite Precipitation within the TAG Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 119–127 http://www.researchgate.net/publication/235846591_Fluid_mixing_and_anhydrite_precipitation_within_the_TAG_mound
    Mills, R. A., Tivey, M. K., 1999. Seawater Entrainment and Fluid Evolution with TAG Hydrothermal Mound: Evidence from Analysis of Anhydrite. In: Cann, J. R., Elderfield, H., Laughton, A., eds., Mid-Ocean Ridge. Cambridge University Press, Cambridge. 224–248
    Mitra, A., Elderfield, H., Greaves, M. J., 1994. Rare Earth Elements in Submarine Hydrothermal Fluids and Plumes from the Mid-Atlantic Ridge. Marine Chemistry, 46: 217–235 doi: 10.1016/0304-4203(94)90079-5
    Ogawa, Y., Shikazono, N., Ishiyama, D., et al., 2007. Mechanisms for Anhydrite and Gypsum Formation in the Kuroko Massive Sulfide-Sulfate Deposits, North Japan. Mineralium Deposita, 42: 219–233 doi: 10.1007/s00126-006-0101-7
    Owen, R. M., Oliverez, A. M., 1988. Geochemistry of Rare Earth Elements in Pacific Hydrothermal Sediments. Marine Chemistry, 25: 183–196 doi: 10.1016/0304-4203(88)90063-1
    Ravizza, G., Blusztajn, J., Damm, K. L. V., et al., 2001. Sr Isotope Variations in Vent Fluids from 9°46′–9°54′N East Pacific Rise: Evidence of a Non-Zero-Mg Fluid Component. Geochimica et Cosmochimica Acta, 65(5): 729–739 doi: 10.1016/S0016-7037(00)00590-1
    Sato, T., 1973. A Chloride Complex Model for Kuroko Mineralization. Geochemical Journal, 7: 245–270 doi: 10.2343/geochemj.7.245
    Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides. Acta Crystallographica Section A, 32: 751–767 doi: 10.1107/S0567739476001551
    Shikazono, N., Holland, H. D., Quirk, R. F., 1983. Anhydrite in Kuroko Deposits: Mode of Occurrence and Depositional Mechanisms. Economic Geology Monograph, 5: 329–344
    Styrt, M. M., Brackmann, A. J., Holland, H. D., et al., 1981. The Mineralogy and the Isotopic Composition of Sulfur in Hydrothermal Sulphide/Sulfate Deposits on the East Pacific Rise, 21°N Latitude. Earth and Planetary Science Letters, 53: 382–390 doi: 10.1016/0012-821X(81)90042-X
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313–345 doi: 10.1144/GSL.SP.1989.042.01.19
    Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998a. Dissecting an Active Hydrothermal Deposit: The Strontium and Oxygen Isotopic Anatomy of the TAG Hydrothermal Mound—Anhydrite. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 129–142
    Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998b. Strontium and Oxygen Isotopic Constraints on Fluid Mixing Alteration and Mineralization in the TAG Hydrothermal Deposit. Chemical Geology, 149: 1–24 doi: 10.1016/S0009-2541(98)00030-8
    Teagle, D. A. H., Alt, J. C., Halliday, A. N., 1998c. Tracing the Chemical Evolution of Fluids during Hydrothermal Recharge: Constraints from Anhydrite Recovered in ODP Hole 504B. Earth and Planetary Science Letters, 155: 167–182 doi: 10.1016/S0012-821X(97)00209-4
    Thompson, G., Humphris, S. E., Shroeder, B., et al., 1988. Hydrothermal Mineralization on the Mid-Atlantic Ridge. Canadian Mineralogist, 26: 691–711
    Von Damm, K. L., 2000. Chemistry of Hydrothermal Vent Fluids from 9–10°N, East Pacific Rise: "Time Zero", the Immediate Posteruptive Period. Journal of Geophysical Research, 105(B5): 11203–11222 doi: 10.1029/1999JB900414
    Von Damm, K. L., 2004. Evolution of the Hydrothermal System at East Pacific Rise 9°54′N: Geochemical Evidence for Changes in the Upper Oceanic Crust. In: German, C. R., Lin, J., Parson, L. M., eds., Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. American Geophysical Union, Washington DC. 285–304
    Von Damm, K. L., Buttermore, L. G., Oosting, S. E., et al., 1997. Direct Observation of the Evolution of a Seafloor 'Black Smoker' from Vapor to Brine. Earth and Planetary Science Letters, 149(1–4): 101–111
    Von Damm, K. L., Lilley, M. D., 2004. Diffuse Flow Hydrothermal Fluids from 9°50′N East Pacific Rise: Origin, Evolution and Biogeochemical Controls. In: Wilcock, W. S. D., Delong, E. F., Kelley, D. S., et al., eds., The Subseafloor Biosphere at Mid-Ocean Ridges. AGU, Washington DC. 245–268
    Von Damm, K. L., Oosting, S. E., Kozlowskl, R., et al., 1995. Evolution of East Pacific Rise Hydrothermal Vent Fluids Following a Volcanic Eruption. Nature, 375: 47–50 doi: 10.1038/375047a0
    Woodruff, L. G., Shanks Ⅲ, W. C., 1988. Sulfur Isotope Study of Chimney Minerals and Vent Fluids from 21°N, East Pacific Rise: Hydrothermal Sulfur Sources and Disequilibrium Sulfate Reduction. Journal of Geophysical Research, 93(B5): 4562–4572 doi: 10.1029/JB093iB05p04562
    Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SWChina. Journal of Earth Science, 24(5): 759–771 doi: 10.1007/s12583-013-0372-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(2001) PDF downloads(470) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return