Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov.  2015
Turn off MathJax
Article Contents

Lanbo Liu, Robert Mehl, Weijun Wang, Qi-Fu Chen. Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement. Journal of Earth Science, 2015, 17(6): 799-806. doi: 10.1007/s12583-015-0594-z
Citation: Lanbo Liu, Robert Mehl, Weijun Wang, Qi-Fu Chen. Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement. Journal of Earth Science, 2015, 17(6): 799-806. doi: 10.1007/s12583-015-0594-z

Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement

doi: 10.1007/s12583-015-0594-z
  • Received Date: 2015-12-03
  • Rev Recd Date: 2015-12-03
  • Publish Date: 2015-12-03
  • In this paper we discuss the use of the Hilbert-Huang transform (HHT) to enhance the time-frequency analysis of microtremor measurements. HHT is a powerful algorithm that combines the process of empirical mode decomposition (EMD) and the Hilbert transform to compose the HilbertHuang spectrum that contains the time-frequency-energy information of the recorded signals. HHT is an adaptive algorithm and does not require the signals to be linear or stationary. HHT is advantageous for analyzing microtremor data, since observed microtremors are commonly contaminated by nonstationary transient noises close to the recording instruments. This is especially true when microtremors are measured in an urban environment. In our data processing HHT was used to (1) eliminate the unwanted short-duration transient constituents from microtremor data and use only the coherent portion of the data to carry out the widely used horizontal to vertical spectral ratio (H/V) method; (2) identify and eliminate the continuous industrial noise in certain frequency band; and (3) enhance the H/V analysis by using the Hilbert-Huang spectrum (HHS). The efficacy of this proposed approach is demonstrated by the examples of applying it to microtremor data acquired in the metropolitan Beijing area.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(407) PDF downloads(144) Cited by()

Related
Proportional views

Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement

doi: 10.1007/s12583-015-0594-z

Abstract: In this paper we discuss the use of the Hilbert-Huang transform (HHT) to enhance the time-frequency analysis of microtremor measurements. HHT is a powerful algorithm that combines the process of empirical mode decomposition (EMD) and the Hilbert transform to compose the HilbertHuang spectrum that contains the time-frequency-energy information of the recorded signals. HHT is an adaptive algorithm and does not require the signals to be linear or stationary. HHT is advantageous for analyzing microtremor data, since observed microtremors are commonly contaminated by nonstationary transient noises close to the recording instruments. This is especially true when microtremors are measured in an urban environment. In our data processing HHT was used to (1) eliminate the unwanted short-duration transient constituents from microtremor data and use only the coherent portion of the data to carry out the widely used horizontal to vertical spectral ratio (H/V) method; (2) identify and eliminate the continuous industrial noise in certain frequency band; and (3) enhance the H/V analysis by using the Hilbert-Huang spectrum (HHS). The efficacy of this proposed approach is demonstrated by the examples of applying it to microtremor data acquired in the metropolitan Beijing area.

Lanbo Liu, Robert Mehl, Weijun Wang, Qi-Fu Chen. Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement. Journal of Earth Science, 2015, 17(6): 799-806. doi: 10.1007/s12583-015-0594-z
Citation: Lanbo Liu, Robert Mehl, Weijun Wang, Qi-Fu Chen. Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement. Journal of Earth Science, 2015, 17(6): 799-806. doi: 10.1007/s12583-015-0594-z

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return