Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
John H. Bradford. Reverse-time prestack depth migration of GPR data from topography for amplitude reconstruction in complex environments. Journal of Earth Science, 2015, 26(6): 791-798. doi: 10.1007/s12583-015-0596-x
Citation: John H. Bradford. Reverse-time prestack depth migration of GPR data from topography for amplitude reconstruction in complex environments. Journal of Earth Science, 2015, 26(6): 791-798. doi: 10.1007/s12583-015-0596-x

Reverse-time prestack depth migration of GPR data from topography for amplitude reconstruction in complex environments

doi: 10.1007/s12583-015-0596-x
More Information
  • Corresponding author: John H. Bradford, jbradford@boisestate.edu
  • Received Date: 11 Jan 2015
  • Accepted Date: 13 May 2015
  • Publish Date: 01 Dec 2015
  • With increased computational power, reverse-time prestack depth migration (RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar (GPR) applications. Complex topography alters the wavefield kinematics making for a challenging imaging problem. Model simulations show that topographic variation can substantially distort reflection amplitudes due to irregular wavefield spreading, attenuation anomalies due to irregular path lengths, and focusing and defocusing effects at the surface. The effects are magnified when the topographic variations are on the same order as the depth of investigation—a situation that is often encountered in GPR investigations. Here, I use a full wave-equation RT-PSDM algorithm to image GPR data in the presence of large topographic variability relative to the depth of investigation. The source and receiver wavefields are propagated directly from the topographic surface and this approach inherently corrects for irregular kinematics, spreading and attenuation. The results show that when GPR data are acquired in areas of extreme topography, RT-PSDM can accurately reconstruct reflector geometry as well as reflection amplitude.

     

  • loading
  • Botelho, M. A., Mufti, I. R., Neto, V. P., 1998. Multishot Prestack Depth Migration: An Application on Wide-Angle Reflection and Refraction GPR Data. SEG Technical Program Expanded Abstracts 1998, 1393–1396. doi: 10.1190/1.1820166
    Bradford, J. H., 2006. Applying Reflection Tomography in the Postmigration Domain to Multifold Ground-Penetrating Radar Data. Geophysics, 71(1): K1–K8. doi: 10.1190/1.2159051
    Bradford, J. H., 2008. Measuring Water Content Heterogeneity Using Multifold GPR with Reflection Tomography. Vadose Zone Journal, 7(1): 184–193. doi: 10.2136/vzj2006.0160
    Bradford, J. H., 2012. GPR Prestack Amplitude Recovery for Radiation Patterns Using a Full Wave-Equation, Reverse-Time Migration Algorithm. SEG Technical Program Expanded Abstracts 2012, 1–5. doi: 10.1190/segam2012-1444.1
    Chattopadhyay, S., McMechan, G. A., 2008. Imaging Conditions for Prestack Reverse-Time Migration. Geophysics, 73(3): S81–S89. doi: 10.1190/1.2903822
    Deng, F., McMechan, G. A., 2007. True-Amplitude Prestack Depth Migration. Geophysics, 72(3): S155–S166. doi: 10.1190/1.2714334
    Engheta, N., Papas, C. H., Elachi, C., 1982. Radiation Patterns of Interfacial Dipole Antennas. Radio Science, 17(6): 1557–1566. doi: 10.1029/rs017i006p01557
    Fisher, E., McMechan, G. A., Annan, A. P., et al., 1992. Examples of Reverse-Time Migration of Single-Channel, Ground-Penetrating Radar Profiles. Geophysics, 57(4): 577–586. doi: 10.1190/1.1443271
    Lehmann, F., Green, A. G., 2000. Topographic Migration of Georadar Data: Implications for Acquisition and Processing. Geophysics, 65(3): 836–848. doi: 10.1190/1.1444781
    Leuschen, C. J., Plumb, R. G., 2001. A Matched-Filter-Based Reverse-Time Migration Algorithm for Ground-Penetrating Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 929–936. doi: 10.1109/36.921410
    Sanada, Y., Ashida, Y., 1999. An Imaging Algorithm for GPR Data. Symposium on the Application of Geophysics to Engineering and Environmental Problems 1999, Boston. 565–573. doi: 10.4133/1.2922652
    Shragge, J., Irving, J., Artman, B., 2004. Shot-Profile Migration of GPR Data. Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft. 337–340
    Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. , 16: 574–582
    Zhou, D., Huang, W. P., Xu, C. L., et al., 2001. The Perfectly Matched Layer Boundary Condition for Scalar Finite-Difference Time-Domain Method. IEEE Photonics Technology Letters, 13(5): 454–456. doi: 10.1109/68.920749
    Zhou, H., Sato, M., Liu H. J., 2005. Migration Velocity Analysis and Prestack Migration of Common-Transmitter GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 43(1): 86–91. doi: 10.1109/tgrs.2004.839920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(717) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return