Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Yixin Ye, Xiangyun Hu, Dong Xu. A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach. Journal of Earth Science, 2015, 26(6): 821-826. doi: 10.1007/s12583-015-0598-8
Citation: Yixin Ye, Xiangyun Hu, Dong Xu. A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach. Journal of Earth Science, 2015, 26(6): 821-826. doi: 10.1007/s12583-015-0598-8

A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach

doi: 10.1007/s12583-015-0598-8
More Information
  • Corresponding author: Xiangyun Hu, xyhu@cug.edu.cn
  • Received Date: 19 Apr 2015
  • Accepted Date: 20 May 2015
  • Publish Date: 01 Dec 2015
  • A goal-oriented adaptive finite element (FE) method for solving 3D direct current (DC) resistivity modeling problem is presented. The model domain is subdivided into unstructured tetrahedral elements that allow for efficient local mesh refinement and flexible description of complex models. The elements that affect the solution at each receiver location are adaptively refined according to a goal-oriented posteriori error estimator using dual-error weighting approach. The FE method with adapting mesh can easily handle such structures at almost any level of complexity. The method is demonstrated on two synthetic resistivity models with analytical solutions and available results from integral equation method, so the errors can be quantified. The applicability of the numerical method is illustrated on a resistivity model with a topographic ridge. Numerical examples show that this method is flexible and accurate for geometrically complex situations.

     

  • loading
  • Babuška, I., Rheinboldt, W. C., 1978. A-Posteriori Error Estimates for the Finite Element Method. International Journal for Numerical Methods in Engineering, 12(10): 1597–1615. doi: 10.1002/nme.1620121010
    Bank, R. E., Xu, J. C., 2003. Asymptotically Exact a Posteriori Error Estimators, Part Ⅱ: General Unstructured Grids. SIAM Journal on Numerical Analysis, 41: 2313–2332 doi: 10.1137/S0036142901398751
    Barrett, R., Berry, M., Chan, T. F., et al., 2006. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics, Philadelphia
    Blome, M., Maurer, H. R., Schmidt, K., 2009. Advances in Three-Dimensional Geoelectric Forward Solver Techniques. Geophysical Journal International, 176(3): 740–752. doi: 10.1111/j.1365-246x.2008.04006.x
    Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155 doi: 10.1190/1.1440151
    Huang, J. G., Ruan, B. Y., Bao, G. S., 2003. Finite Element Method for IP Modeling on 3-D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 28(3): 323–326 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200303013.htm
    Hvoždara, M., Kaikkonen, P., 1994. The Boundary Integral Calculations of the Forward Problem for D.C. Sounding and MMR Methods for a 3-D Body near a Vertical Contact. Studia Geophysica et Geodætica, 38(4): 375–398. doi: 10.1007/bf02296169
    Key, K., Weiss, C., 2006. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 71(6): G291–G299. doi: 10.1190/1.2348091
    Li, Y. G., Key, K., 2007. 2D Marine Controlled-Source Electromagnetic Modeling: Part 1—An Adaptive Finite-Element Algorithm. Geophysics, 72(2): WA51–WA62. doi: 10.1190/1.2432262
    Li, Y. G., Pek, J., 2008. Adaptive Finite Element Modelling of Two-Dimensional Magnetotelluric Fields in General Anisotropic Media. Geophysical Journal International, 175(3): 942–954. doi: 10.1111/j.1365-246x.2008.03955.x
    Li, Y. G., Spitzer, K., 2005. Finite Element Resistivity Modelling for Three-Dimensional Structures with Arbitrary Anisotropy. Physics of the Earth and Planetary Interiors, 150(1–3): 15–27. doi: 10.1016/j.pepi.2004.08.014
    Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934. doi: 10.1046/j.1365-246x.2002.01819.x
    Ovall, J. S., 2004. Duality-Based Adaptive Refinement for Elliptic: [Dissertation]. University of California, San Diego
    Ovall, J. S., 2005. Asymptotically Exact Functional Error Estimators Based on Superconvergent Gradient Recovery. Numerical Mathematics, 102: 543–558
    Penz, S., Chauris, H., Donno, D., et al., 2013. Resistivity Modelling with Topography. Geophysical Journal International, 194(3): 1486–1497 doi: 10.1093/gji/ggt169
    Pridmore, D., Hohmann, G. W., Ward, S. H., et al., 1981. An Investigation of Finite-Element Modeling for Electrical and Electromagnetic Modelling Data in Three Dimensions. Geophysics, 46: 1009–1024 doi: 10.1190/1.1441239
    Qiang, J. K., Luo, Y. Z., 2007. The Resistivity FEM Numerical Modeling on 3D Undulating Topography. Chinese J. Geophys. , 50(5): 1606–1613 (in Chinese with English Abstract)
    Ren, Z. Y., Tang, J. T., 2010. 3D Direct Current Resistivity Modeling with Unstructured Mesh by Adaptive Finite-Element Method. Geophysics, 75(1): H7–H17 doi: 10.1190/1.3298690
    Ruan, B. Y., Xiong, B., Xu, S. Z., 2001. Finite Element Method for Modeling Resistivity Sounding on 3D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 26(1): 73–77 (in Chinese with English Abstract)
    Rücker, C., Günther, T., Spitzer, K., 2006. Three-Dimensional Modelling and Inversion of DCResistivity Data Incorporating Topography-I. Modelling. Geophysical Journal International, 166(2): 495–505. doi: 10.1111/j.1365-246x.2006.03010.x
    Sasaki, Y., 1994. 3-D Resistivity Inversion Using the Finite-lement Method. Geophysics, 59(12): 1839–1848. doi: 10.1190/1.1443571
    Si, H., 2003. TETGEN: A 3D Delaunay Tetrahedral Mesh Generator. http://tetgen.berlios.de. [2015.11.10]
    Tang, J. T., Wang, F. Y., Xiao, X., et al., 2011. 2.5-D DCResistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 22(1): 124–130 doi: 10.1007/s12583-011-0163-z
    Wang, W., Wu, X. P., Spitzer, K., 2013. Three-Dimensional DC Anisotropic Resistivity Modelling Using Finite-Elements on Unstructured Grids. Geophysical Journal International, 193(2): 734–746. doi: 10.1093/gji/ggs124
    Weiss, C. J., 2001. A Matrix-Free Approach to Solving the Fully 3D Electromagnetic Induction Problem. 71st Annual International Meeting, SEG, Expanded Abstracts
    Wu, X. P., Wang, T. T., 2003. A 3-D Finite Element Resistivity Forward Modeling Using Conjugate Gradient Algorithm. Chinese J. Geophys. , 46(3): 428–432 (in Chinese with English Abstract)
    Xu, S. Z., 1994. The Finite Element Method in Geophysics. Science Press, Beijing (in Chinese)
    Xu, S. Z., Liu, B., Ruan, B. Y., 1994. The Finite Element Method for Solving Anomalous Potential for Resistivity Surveys. Chinese J. Geophys. , 37(S2): 511–515 (in Chinese with English Abstract)
    Zhou, B., Greenhalgh, S. A., 2001. Finite Element Three-Dimensional Direct Current Resistivity Modelling: Accuracy and Efficiency Considerations. Geophysical Journal International, 145: 679–688 doi: 10.1046/j.0956-540x.2001.01412.x
    Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method (5th Ed. ), Basic Foundation. Butterworth-Heinemann, Elsevier
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(690) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return