Babuška, I., Rheinboldt, W. C., 1978. A-Posteriori Error Estimates for the Finite Element Method. International Journal for Numerical Methods in Engineering, 12(10): 1597–1615. doi: 10.1002/nme.1620121010 |
Bank, R. E., Xu, J. C., 2003. Asymptotically Exact a Posteriori Error Estimators, Part Ⅱ: General Unstructured Grids. SIAM Journal on Numerical Analysis, 41: 2313–2332 doi: 10.1137/S0036142901398751 |
Barrett, R., Berry, M., Chan, T. F., et al., 2006. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics, Philadelphia |
Blome, M., Maurer, H. R., Schmidt, K., 2009. Advances in Three-Dimensional Geoelectric Forward Solver Techniques. Geophysical Journal International, 176(3): 740–752. doi: 10.1111/j.1365-246x.2008.04006.x |
Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155 doi: 10.1190/1.1440151 |
Huang, J. G., Ruan, B. Y., Bao, G. S., 2003. Finite Element Method for IP Modeling on 3-D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 28(3): 323–326 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200303013.htm |
Hvoždara, M., Kaikkonen, P., 1994. The Boundary Integral Calculations of the Forward Problem for D.C. Sounding and MMR Methods for a 3-D Body near a Vertical Contact. Studia Geophysica et Geodætica, 38(4): 375–398. doi: 10.1007/bf02296169 |
Key, K., Weiss, C., 2006. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 71(6): G291–G299. doi: 10.1190/1.2348091 |
Li, Y. G., Key, K., 2007. 2D Marine Controlled-Source Electromagnetic Modeling: Part 1—An Adaptive Finite-Element Algorithm. Geophysics, 72(2): WA51–WA62. doi: 10.1190/1.2432262 |
Li, Y. G., Pek, J., 2008. Adaptive Finite Element Modelling of Two-Dimensional Magnetotelluric Fields in General Anisotropic Media. Geophysical Journal International, 175(3): 942–954. doi: 10.1111/j.1365-246x.2008.03955.x |
Li, Y. G., Spitzer, K., 2005. Finite Element Resistivity Modelling for Three-Dimensional Structures with Arbitrary Anisotropy. Physics of the Earth and Planetary Interiors, 150(1–3): 15–27. doi: 10.1016/j.pepi.2004.08.014 |
Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934. doi: 10.1046/j.1365-246x.2002.01819.x |
Ovall, J. S., 2004. Duality-Based Adaptive Refinement for Elliptic: [Dissertation]. University of California, San Diego |
Ovall, J. S., 2005. Asymptotically Exact Functional Error Estimators Based on Superconvergent Gradient Recovery. Numerical Mathematics, 102: 543–558 |
Penz, S., Chauris, H., Donno, D., et al., 2013. Resistivity Modelling with Topography. Geophysical Journal International, 194(3): 1486–1497 doi: 10.1093/gji/ggt169 |
Pridmore, D., Hohmann, G. W., Ward, S. H., et al., 1981. An Investigation of Finite-Element Modeling for Electrical and Electromagnetic Modelling Data in Three Dimensions. Geophysics, 46: 1009–1024 doi: 10.1190/1.1441239 |
Qiang, J. K., Luo, Y. Z., 2007. The Resistivity FEM Numerical Modeling on 3D Undulating Topography. Chinese J. Geophys. , 50(5): 1606–1613 (in Chinese with English Abstract) |
Ren, Z. Y., Tang, J. T., 2010. 3D Direct Current Resistivity Modeling with Unstructured Mesh by Adaptive Finite-Element Method. Geophysics, 75(1): H7–H17 doi: 10.1190/1.3298690 |
Ruan, B. Y., Xiong, B., Xu, S. Z., 2001. Finite Element Method for Modeling Resistivity Sounding on 3D Geoelectric Section. Earth Science—Journal of China University of Geosciences, 26(1): 73–77 (in Chinese with English Abstract) |
Rücker, C., Günther, T., Spitzer, K., 2006. Three-Dimensional Modelling and Inversion of DCResistivity Data Incorporating Topography-I. Modelling. Geophysical Journal International, 166(2): 495–505. doi: 10.1111/j.1365-246x.2006.03010.x |
Sasaki, Y., 1994. 3-D Resistivity Inversion Using the Finite-lement Method. Geophysics, 59(12): 1839–1848. doi: 10.1190/1.1443571 |
Si, H., 2003. TETGEN: A 3D Delaunay Tetrahedral Mesh Generator. http://tetgen.berlios.de. [2015.11.10] |
Tang, J. T., Wang, F. Y., Xiao, X., et al., 2011. 2.5-D DCResistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 22(1): 124–130 doi: 10.1007/s12583-011-0163-z |
Wang, W., Wu, X. P., Spitzer, K., 2013. Three-Dimensional DC Anisotropic Resistivity Modelling Using Finite-Elements on Unstructured Grids. Geophysical Journal International, 193(2): 734–746. doi: 10.1093/gji/ggs124 |
Weiss, C. J., 2001. A Matrix-Free Approach to Solving the Fully 3D Electromagnetic Induction Problem. 71st Annual International Meeting, SEG, Expanded Abstracts |
Wu, X. P., Wang, T. T., 2003. A 3-D Finite Element Resistivity Forward Modeling Using Conjugate Gradient Algorithm. Chinese J. Geophys. , 46(3): 428–432 (in Chinese with English Abstract) |
Xu, S. Z., 1994. The Finite Element Method in Geophysics. Science Press, Beijing (in Chinese) |
Xu, S. Z., Liu, B., Ruan, B. Y., 1994. The Finite Element Method for Solving Anomalous Potential for Resistivity Surveys. Chinese J. Geophys. , 37(S2): 511–515 (in Chinese with English Abstract) |
Zhou, B., Greenhalgh, S. A., 2001. Finite Element Three-Dimensional Direct Current Resistivity Modelling: Accuracy and Efficiency Considerations. Geophysical Journal International, 145: 679–688 doi: 10.1046/j.0956-540x.2001.01412.x |
Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method (5th Ed. ), Basic Foundation. Butterworth-Heinemann, Elsevier |