Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Chih-Ping Lin, Shr-Hong Tang, Chun-Hung Lin, Chih-Chung Chung. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity. Journal of Earth Science, 2015, 26(6): 827-834. doi: 10.1007/s12583-015-0599-7
Citation: Chih-Ping Lin, Shr-Hong Tang, Chun-Hung Lin, Chih-Chung Chung. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity. Journal of Earth Science, 2015, 26(6): 827-834. doi: 10.1007/s12583-015-0599-7

An improved modeling of TDR signal propagation for measuring complex dielectric permittivity

doi: 10.1007/s12583-015-0599-7
More Information
  • Corresponding author: Chih-Ping Lin, cplin@mail.nctu.edu.tw
  • Received Date: 21 May 2015
  • Accepted Date: 07 Sep 2015
  • Publish Date: 01 Dec 2015
  • Time domain reflectometry (TDR) is a measurement technique based upon transmission line theory. The solutions of transmission line equations are reformulated in terms of independent physical properties, instead of coupled per-unit-length circuit parameters. The complete TDR response is effectively modeled by a non-uniform transmission line using the non-recursive ABCD matrix approach. Approaches to calibrate line parameters and perform TDR measurements based upon such model are introduced with an example on dielectric spectroscopy. TDR modeling in terms of decoupled physical parameters and non-recursive algorithm allows more convenient calibration of line parameters and facilitates interpretation of TDR measurements.

     

  • loading
  • Bolvin H., Chambarel, A., 2007. Electromagnetic Wave Propagation in Polarizable Wet Media: Application to a TDR Probe. Measurement Science and Technology, 18: 1105–1109 doi: 10.1088/0957-0233/18/4/019
    Cataldo, A., Catarinucci, L., Tarricone, L., et al., 2009. A Combined TD-FD Method for Enhanced Reflectometry Measurements in Liquid Quality Monitoring. IEEE Transactions on Instrumentation and Measurement, 58(10): 3534–3543 doi: 10.1109/TIM.2009.2018009
    Cataldo, A., Tarricone, L., Attivissimo, F., et al., 2007. A TDR Method for Real-time Monitoring of Liquids. IEEE Transactions on Instrumentation and Measurement, 56(6): 1616–1625
    Cataldo, A., Tarricone, L., Attivissimo, F., et al., 2008a. Simultaneous Measurement of Dielectric Properties and Levels of Liquids Using a TDR Method. Measurement, 41(3): 307–319 doi: 10.1016/j.measurement.2006.11.006
    Cataldo, A., Tarricone, L., Vallone, M., et al., 2008b. Uncertainty Estimation in Simultaneous Measurements of Levels and Permittivities of Liquids Using TDR Technique. IEEE Transactions on Instrumentation and Measurement, 57(3): 454–466 doi: 10.1109/TIM.2007.911700
    Claerbout, J., 1976. Fundamentals of Geophysical Data Processing. McGraw-Hill, New York
    Clarkson, T. S., Glasser, L., Tuxworth, R. W., et al., 1977. An Appreciation of Experimental Factors in Time-Domain Spectroscopy. Advances in Molecular Relaxation Processes, 10(3): 173–202 doi: 10.1016/0378-4487(77)80048-4
    Di Sante, R., 2005. Time Domain Reflectometry-Based Liquid Level Sensor. Review of Scientific Instruments, 76(9): 095107 doi: 10.1063/1.2037927
    Dowding, C. H., Su, M. B., O'Connor, K. M., 1988. Principles of Time Domain Reflectometometry Applied to Measurement of Rock Mass Deformation. International Journal of Rock Mechanics & Mining Sciences, 25(5): 287–297 http://www.sciencedirect.com/science/article/pii/0148906288900058
    Dowding, C. H., Summers, J. A., Taflove, A., et al., 2002. Electromagnetic Wave Propagation Model for Differentiation of Geotechnical Disturbances along Buried Cables. Geotechnical Testing Journal, 25(4): 449–458 http://www.researchgate.net/profile/Allen_Taflove/publication/230844515_Electromagnetic_Wave_Propagation_Model_for_Differentiation_of_Geotechnical_Disturbances_Along_Buried_Cables/links/5a5915e10f7e9b5fb38400ad/Electromagnetic-Wave-Propagation-Model-for-Differentiation-of-Geotechnical-Disturbances-Along-Buried-Cables.pdf
    Feng, W., Lin, C. -P., Deschamps, R. J., et al., 1999. Theoretical Model of a Multisection Time Domain Reflectometry Measurement System. Water Resources Research, 35(8): 2321–2331 doi: 10.1029/1999WR900123
    Friel, R., Or, D., 1999. Frequency Analysis of Time-Domain Reflectometry (TDR) with Application to Dielectric Spectroscopy of Soil Constituents. Geophysics, 64(3): 707–718 doi: 10.1190/1.1444580
    Gorriti, A. G., Slob, E. C., 2005. A New Tool for Accurate S-Parameters Measurements and Permittivity Reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1727–1735 doi: 10.1109/TGRS.2005.851163
    Heimovaara, T. J., 1994. Frequency Domain Analysis of Time Domain Reflectometry Waveforms: 1. Measurement of the Complex Dielectric Permittivity of Soils. Water Resources Research, 30(2): 189–199 doi: 10.1029/93WR02948
    Klein, L. A., Swift, C. T., 1977. An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies. IEEE Transactions on Antennas and Propagation, 25(1): 104–111 doi: 10.1109/TAP.1977.1141539
    Lin, C. -P., 2003. Analysis of a Non-Uniform and Dispersive Time Domain Reflectometry Measurement Systems with Application to the Dielectric Spectroscopy of Soils. Water Resources Research, 39(1): 1012 doi: 10.1029/2002WR001418
    Lin, C. -P., Chung, C. -C., Tang, S. H., 2007. Accurate Time Domain Reflectometry Measurement of Electrical Conductivity Accounting for Cable Resistance and Recording Time. Soil Science Society of America Journal, 71(4): 1278–1287 doi: 10.2136/sssaj2006.0383
    Lin, C. -P., Tang, S. -H., 2007. Comprehensive Wave Propagation Model to Improve TDR Interpretations for Geotechnical Applications. Geotechnical Testing Journal, 30(2): 90–97 http://www.researchgate.net/publication/245403507_Comprehensive_Wave_Propagation_Model_to_Improve_TDR_Interpretations_for_Geotechnical_Applications/download
    Lin, C. -P., Tang, S. -H., Lin, W. -C., et al., 2009. Quantification of Cable Deformation with TDR: Implications to Localized Shear Deformation Monitoring. Journal of Geotechnical and Geoenvironmental Engineering, 135(1): 143–152 doi: 10.1061/(ASCE)1090-0241(2009)135:1(143)
    Lin, M. W., Thaduri, J., Abatan, A. O., 2005. Development of an Electrical Time Domain Reflectometry (ETDR) Distributed Strain Sensor. Measurement Science and Technology, 16(7): 1495–1505 doi: 10.1088/0957-0233/16/7/012
    Nemarich, C. P., 2001. Time Domain Reflectometry Liquid Level Sensors. IEEE Transactions on Instrumentation and Measurement, 4(4): 40–44 doi: 10.1109/5289.975464
    Paul, C. R., 1994. Analysis of Multi-Conductor Transmission Lines. John Wiley, New York
    Protonotarios, E. N., Wing, O., 1967. Analysis and Intrinsic Properties of the General Non-Uniform Transmission Line. IEEE Transactions on Microwave Theory and Techniques, 15: 142–150 doi: 10.1109/TMTT.1967.1126403
    Ramo, S., Whinnery, J. R., Van Duzer, T., 1994. Fields and Waves in Communication Electronics, 3rd Ed. . John Wiley, New York
    Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content and Electrical Conductivity Measurement Using Time Domain Reflectometry. Water Resources Research, 16(3): 574–582 doi: 10.1029/WR016i003p00574
    Yanuka, M., Topp, G. C., Zegelin, S., et al., 1988. Multiple Reflection and Attenuation of Time Domain Reflectometry Pulses: Theoretical Considerations for Applications to Soil and Water. Water Resources Research, 24(7): 939–944 doi: 10.1029/WR024i007p00939
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(430) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return