Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Jianping Huang, Maolin Yuan, Qing Zhang, Lingxiao Jia, Zhenchun Li, Jiguang Li, Shengtian Zhao. Reverse Time Migration with Elastodynamic Gaussian Beams. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9
Citation: Jianping Huang, Maolin Yuan, Qing Zhang, Lingxiao Jia, Zhenchun Li, Jiguang Li, Shengtian Zhao. Reverse Time Migration with Elastodynamic Gaussian Beams. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9

Reverse Time Migration with Elastodynamic Gaussian Beams

doi: 10.1007/s12583-015-0609-9
More Information
  • Elastic migration has been widely paid attention by employing the vector processing of multicomponent seismic data. Ray based elastic Kirchhoff migration has such properties as high flexibility and high efficiency. However, it has failed to solve many problems caused by multipath. On the other hand, elastic reverse-time migration (RTM) based on the two-way wave equation is known to be capable of dealing with these problems, but it is extremely expensive when applied in 3D cases and velocity model building. Based on the elastic Kirchhoff-Helmholtz integral, we calculate decoupled backward-continued wavefields by introducing elastic Green functions for P-and S-waves, which is expressed by a summation of elastodynamic Gaussian beams. The PP and polarity-corrected PS images are obtained by calculating the correlation between downward and decoupled backward-continued vector wavefields, where polarity correction is performed by analyzing the relation between the polarization direction of converted PS waves and incident angle on the interface. To a large extent, our method combines the high efficiency of ray-based migration with the high accuracy of wave-equation based reverse-time migration. Application of this method to multicomponent synthetic datasets from the fault model and Marmousi 2 model demonstrates the validity, flexibility and accuracy of the new method.

     

  • loading
  • Červeny, V., Popov, M. M., Psencik, I., 1982. Computation of Wave Fields in Inhomogeneous Media—Gaussian Beam Approach. Geophysical Journal International, 70(1): 109–128. doi: 10.1111/j.1365-246x.1982.tb06394.x
    Červený , V., Psencik, I., 1983. Gaussian Beams and Paraxial Ray Approximation in Three-Dimensional Elastic Inhomogeneous Media. J. Geophys., 53: 1–15 https://www.researchgate.net/publication/292011160_Gaussian_beams_and_paraxial_ray_approximation_in_three-_dimensional_elastic_inhomogeneous_media
    Chang, W., McMechan, G. A., 1987. Elastic Reverse-Time Migration. Geophysics, 52(10): 1365–1375. doi: 10.1190/1.1442249
    Druzhinin, A., 2003. Decoupled Elastic Prestack Depth Migration. Journal of Applied Geophysics, 54(3/4): 369–389. doi: 10.1016/j.jappgeo.2003.03.001
    Du, Q. Z., Gong, X. F., Zhu, Y. T., et al., 2012. PS Wave Imaging in 3D Elastic Reverse-Time Migration. SEG Technical Program Expanded Abstracts 2012, 79: 1–4. doi: 10.1190/segam2012-0107.1
    Du, Q. Z., Hou, B., 2008. Elastic Kirchhoff Migration of Vectorial Wave-Fields. Applied Geophysics, 5(4): 284–293. doi: 10.1007/s11770-008-0045-z
    Gray, S. H., 2005. Gaussian Beam Migration of Common-Shot Records. Geophysics, 70(4): S71–S77. doi: 10.1190/1.1988186
    He, B. S., Zhang, H. X., 2006. Vector Prestack Depth Migration of Multi-Component Wavefield. Oil Geophysical Prospecting, 41(4): 369–374 (in Chinese with English Abstract) https://www.researchgate.net/publication/298353374_Vector_prestack_depth_migration_of_multi-component_wavefield
    Hokstad, K., 2000. Multicomponent Kirchhoff Migration. Geophysics, 65(3): 861–873. doi: 10.1190/1.1444783
    Huang, J. P., Zhang, Q., Zhang, K., et al., 2014. Reverse Time Migration with Gaussian Beams Based on Green Function. Oil Geophysical Prospecting, 49(1): 101–106 (in Chinese with English Abstract) https://www.researchgate.net/publication/285753847_Reverse_time_migration_with_Gaussian_beams_based_on_the_Green_function
    Keho, T. H., Wu, R., 1987. Elastic Kirchhoff Migration for Vertical Seismic Profiles. SEG Technical Program Expanded Abstracts 1987, 774–776. doi: 10.1190/1.1891961
    Kuo, J. T., Dai, T. F., 1984. Kirchhoff Elastic Wave Migration for the Case of Noncoincident Source and Receiver. Geophysics, 49(8): 1223–1238. doi: 10.1190/1.1441751
    Pao, Y. H., Varatharajulu, V., 1976. Huygens' Principle, Radiation Conditions and Integral Formulas for the Scattering of Elastic Waves. The Acoustical Society of America, 59(6): 1361–1371. doi: 10.1121/1.381022
    Popov, M. M., 1982. A New Method of Computation of Wave Fields Using Gaussian Beams. Wave Motion, 4(1): 85–97. doi: 10.1016/0165-2125(82)90016-6
    Popov, M. M., Semtchenok, N. M., Popov, P. M., et al., 2010. Depth Migration by the Gaussian Beam Summation Method. Geophysics, 75(2): S81–S93. doi: 10.1190/1.3361651
    Popov, M. M., Semtchenok, N., Popov, P., et al., 2007. Reverse Time Migration with Gaussian Beams and Its Application to a few Synthetic Data Sets. SEG Technical Program Expanded Abstracts 2007, 75: 2165–2170. doi: 10.1190/1.2792916
    Ross Hill, N., 1990. Gaussian Beam Migration. Geophysics, 55(11): 1416–1428. doi: 10.1190/1.1442788
    Sena, A. G., Toksöz, M. N., 1993. Kirchhoff Migration and Velocity Analysis for Converted and Nonconverted Waves in Anisotropic Media. Geophysics, 58(2): 265–276. doi: 10.1190/1.1443411
    Sun, R., McMechan, G. A., 1986. Pre-Stack Reverse-Time Migration for Elastic Waves with Application to Synthetic Offset Vertical Seismic Profiles. Proceedings of the IEEE, 74(3): 457–465. doi: 10.1109/proc.1986.13486
    Xiong, Y., Li, L. M., Luo, S. X., 2006. Forward Modeling and Migration for the Elastic Wavefield in Anisotropic Media. Journal of Chengdu University of Technology (Science & Technology Edition), 33(3): 310–316 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG200603015.htm
    Xu, S. B., Yue, Y. B., Wang, S. J., 2014. Elastic Gaussian Beam Prestack Depth Migration. Oil Geophysical Prospecting, 49(2): 259–265, 287 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ201402007.htm
    Yan, J., Sava, P., 2008. Isotropic Angle-Domain Elastic Reverse-Time Migration. Geophysics, 73(6): S229–S239. doi: 10.1190/1.2981241
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(454) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return