Abdel Aal, G. Z., Atekwana, E. A., Revil, A., 2014. Geophysical Signatures of Disseminated Iron Minerals: A Proxy for Understanding Subsurface Biophysicochemical Processes. Journal of Geophysical Research: Biogeosciences, 119(9): 1831-1849. doi: 10.1002/2014jg002659 |
Allen, J. P., Atekwana, E. A., Atekwana, E. A., et al., 2007. The Microbial Community Structure in Petroleum-Contaminated Sediments Corresponds to Geophysical Signatures. Applied and Environmental Microbiology, 73(9): 2860-2870. doi: 10.1128/aem.01752-06 |
Anderson, R. T., Lovley, D. R., 2000. Anaerobic Bioremediation of Benzene under Sulfate-Reducing Conditions in a Petroleum-Contaminated Aquifer. Environmental Science & Technology, 34(11): 2261-2266. doi: 10.1021/es991211a |
Atekwana, E. A., Atekwana, E. A., 2009. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review. Surveys in Geophysics, 31(2): 247-283. doi: 10.1007/s10712-009-9089-8 |
Atekwana, E. A., Mewafy, F. M., Aal, G. A., et al., 2014. High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction. Journal of Geophysical Research: Biogeosciences, 119(1): 80-94. doi: 10.1002/2013jg002414 |
Atekwana, E. A., Sauck, W. A., Aal, G. Z. A., et al., 2002. Geophysical Investigation of Vadose Zone Conductivity Anomalies at a Hydrocarbon Contaminated Site: Implications for the Assessment of Intrinsic Bioremediation. Journal of Environmental and Engineering Geophysics, 7(3): 103-110. doi: 10.4133/jeeg7.3.103 |
Atekwana, E. A., Werkema, D. D., Duris, J. W., et al., 2004. In-situ Apparent Conductivity Measurements and Microbial Population Distribution at a Hydrocarbon-Contaminated Site. Geophysics, 69(1): 56-63. doi: 10.1190/1.1649375 |
Atlas, R. M., Bartha, R., 1997. Microbial Ecology: Fundamentals and Applications (4th Ed. ). Benjamin/Cummings, Menlo Park |
Beaver, C. L., Williams, A. E., Atekwana, E. A., et al., 2015. Microbial Communities Associated with Zones of Elevated Magnetic Susceptibility in Hydrocarbon-Contaminated Sediments. Geomicrobilogy (in press) |
Bekins, B. A., Cozzarelli, I. M., Godsy, E. M., et al., 2001. Progression of Natural Attenuation Processes at a Crude Oil Spill Site: Ⅱ. Controls on Spatial Distribution of Microbial Populations. Journal of Contaminant Hydrology, 53(3-4): 387-406. doi: 10.1016/s0169-7722(01)00175-9 |
Bennett, P. C., Hiebert, F. K., Choi, W. J., 1996. Microbial Colonization and Weathering of Silicates in a Petroleum-Contaminated Groundwater. Chemical Geology, 132(1-4): 45-53. doi: 10.1016/s0009-2541(96)00040-x |
Cassidy, D. P., Hudak, A. J., Werkema, D. D., et al., 2002. In Situ Rhamnolipid Production at an Abandoned Petroleum Refinery. Soil and Sediment Contamination, 11(5): 769-787. doi: 10.1080/20025891107087 |
Chapelle, F. H., 2001, Ground Water Microbiology and Geochemistry. John Wiley & Sons, New York |
Che-Alota, V., Atekwana, E. A., Atekwana, E. A., et al., 2009. Temporal Geophysical Signatures from Contaminant-Mass Remediation. Geophysics, 74(4): B113-B123. doi: 10.1190/1.3139769 |
Cozzarelli, I. M., Bekins, B. A., Baedecker, M. J., et al., 2001. Progression of Natural Attenuation Processes at a Crude Oil Spill Site: I. Geochemical Evolution of the Plume. Journal of Contaminant Hydrology, 53(3-4): 369-385. doi: 10.1016/s0169-7722(01)00175-9 |
Dearing, J. A., Maher, B. A., Oldfield, F., 1985. Geomorphological Linkages between Soils and Sediments: The Role of Magnetic Measurements. In: Richards, K. S., Arnett, R. R., Ellis, S. K., eds., Geomorphology and Soils. George Allen and Wnwin, London. 441 |
Fahrenfeld, N., Cozzarelli, I. M., Bailey, Z., et al., 2014. Insights into Biodegradation through Depth-Resolved Microbial Community Functional and Structural Profiling of a Crude-Oil Contaminant Plume. Microbial Ecology, 68(3): 453-462. doi: 10.1007/s00248-014-0421-6 |
Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., et al., 1998. Biogenic Iron Mineralization Accompanying the Dissimilatory Reduction of Hydrous Ferric Oxide by a Groundwater Bacterium. Geochimica et Cosmochimica Acta, 62(19-20): 3239-3257. doi: 10.1016/s0016-7037(98)00243-9 |
Lesmes, D. P., Frye, K. M., 2001. Influence of Pore Fluid Chemistry on the Complex Conductivity and Induced Polarization Responses of Berea Sandstone. Journal of Geophysical Research, 106(B3): 4079-4090. doi: 10.1029/2000jb900392 |
Lovley, D. R., Baedecker, M. J., Lonergan, D. J., et al., 1989. Oxidation of Aromatic Contaminants Coupled to Microbial Iron Reduction. Nature, 339(6222): 297-300. doi: 10.1038/339297a0 |
Mewafy, F. M., Atekwana, E. A., Werkema, D. D., et al., 2011. Magnetic Susceptibility as a Proxy for Investigating Microbially Mediated Iron Reduction. Geophysical Research Letters, 38(21): L21402. doi: 10.1029/2011gl049271 |
Mewafy, F. M., Werkema, D. D., Atekwana, E. A., et al., 2013. Evidence that Bio-Metallic Mineral Precipitation Enhances the Complex Conductivity Response at a Hydrocarbon Contaminated Site. Journal of Applied Geophysics, 98: 113-123. doi: 10.1016/j.jappgeo.2013.08.011 |
Mullins, C. E., 1977. Magnetic Susceptibility of the Soil and its Significance in Soil Science—A Review. Journal of Soil Science, 28(2): 223-246. doi: 10.1111/j.1365-2389.1977.tb02232.x |
National Research Council (NRC), 2000. Natural Attenuation for Groundwater Remediation. National Academy Press, Washington, D.C. |
Ntarlagiannis, D., Williams, K. H., Slater, L., et al., 2005. Low-Frequency Electrical Response to Microbial Induced Sulfide Precipitation. Journal of Geophysical Research, 110: G02009. doi: 10.1029/2005jg000024 |
Orozco, A. F., Williams, K. H., Long, P. E., et al., 2011. Using Complex Resistivity Imaging to Infer Biogeochemical Processes Associated with Bioremediation of an Uranium-Contaminated Aquifer. Journal of Geophysical Research, 116: G03001. doi: 10.1029/2010jg001591 |
Pelton, W. H., Ward, S. H., Hallof, P. G., et al., 1978. Mineral Discrimination and Removal of Inductive Coupling with Multifrequency IP. Geophysics, 43(3): 588-609. doi: 10.1190/1.1440839 |
Pérez-Guzmán, L., Bogner, K. R., Lower, B. H., 2012. Earth's Ferrous Wheel. Nature Education Knowledge, 3(10): 32 |
Revil, A., Glover, P. W. J., 1998. Nature of Surface Electrical Conductivity in Natural Sands, Sandstones, and Clays. Geophysical Research Letters, 25(5): 691-694. doi: 10.1029/98gl00296 |
Revil, A., Karaoulis, M., Johnson, T., et al., 2012. Review: Some Low-Frequency Electrical Methods for Subsurface Characterization and Monitoring in Hydrogeology. Hydrogeology Journal, 20(4): 617-658. doi: 10.1007/s10040-011-0819-x |
Rijal, M. L., Appel, E., Petrovský, E., et al., 2010. Change of Magnetic Properties due to Fluctuations of Hydrocarbon Contaminated Groundwater in Unconsolidated Sediments. Environmental Pollution, 158(5): 1756-1762. doi: 10.1016/j.envpol.2009.11.012 |
Sauck, W. A., 2000. A Model for the Resistivity Structure of LNAPL Plumes and Their Environs in Sandy Sediments. Journal of Applied Geophysics, 44(2-3): 151-165. doi: 10.1016/s0926-9851(99)00021-x |
Schön, J. H., 1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Handbook of Geophysical Exploration: Seismic Exploration. Pergamon, New York. 18: 583 |
Vinegar, H. J., Waxman, M. H., 1984. Induced Polarization of Shaly Sands. Geophysics, 49(8): 1267-1287. doi: 10.1190/1.1441755 |
Werkema, D., 2003. Investigating the Geoelectrical Response of Hydrocarbon Contamination Undergoing Biodegradation. Geophysical Research Letters, 30(12): 1647-1651. doi: 10.1029/2003gl017346 |
Williams, K. H., Kemna, A., Wilkins, M. J., et al., 2009. Geophysical Monitoring of Coupled Microbial and Geochemical Processes during Stimulated Subsurface Bioremediation. Environmental Science & Technology, 43(17): 6717-6723. doi: 10.1021/es900855j |
Williams, K. H., Ntarlagiannis, D., Slater, L. D., et al., 2005. Geophysical Imaging of Stimulated Microbial Biomineralization. Environmental Science & Technology, 39(19): 7592-7600. doi: 10.1021/es0504035 |
Wu, Y. X., Slater, L. D., Korte, N., 2005. Effect of Precipitation on Low Frequency Electrical Properties of Zerovalent Iron Columns. Environmental Science & Technology, 39(23): 9197-9204. doi: 10.1021/es051052x |
Wu, Y. X., Versteeg, R., Slater, L., et al., 2009. Calcite Precipitation Dominates the Electrical Signatures of Zero Valent Iron Columns under Simulated Field Conditions. Journal of Contaminant Hydrology, 106(3-4): 131-143. doi: 10.1016/j.jconhyd.2009.02.003 |