Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov.  2015
Turn off MathJax
Article Contents

Hao Xie, Lanbo Liu. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 2015, 17(6): 807-812. doi: 10.1007/s12583-015-0619-7
Citation: Hao Xie, Lanbo Liu. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 2015, 17(6): 807-812. doi: 10.1007/s12583-015-0619-7

Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas

doi: 10.1007/s12583-015-0619-7
  • Received Date: 2015-12-03
  • Rev Recd Date: 2015-12-03
  • Publish Date: 2015-12-03
  • In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave (Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy (VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing (VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(532) PDF downloads(137) Cited by()

Related
Proportional views

Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas

doi: 10.1007/s12583-015-0619-7

Abstract: In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave (Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy (VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing (VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach.

Hao Xie, Lanbo Liu. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 2015, 17(6): 807-812. doi: 10.1007/s12583-015-0619-7
Citation: Hao Xie, Lanbo Liu. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 2015, 17(6): 807-812. doi: 10.1007/s12583-015-0619-7

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return