Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Zhenbing She, Fanyan Yang, Wei Liu, Luhua Xie, Yusheng Wan, Chao Li, Dominic Papineau. The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science, 2016, 27(2): 297-316. doi: 10.1007/s12583-015-0654-4
Citation: Zhenbing She, Fanyan Yang, Wei Liu, Luhua Xie, Yusheng Wan, Chao Li, Dominic Papineau. The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science, 2016, 27(2): 297-316. doi: 10.1007/s12583-015-0654-4

The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China

doi: 10.1007/s12583-015-0654-4
More Information
  • Corresponding author: Zhenbing She, zbsher@cug.edu.cn
  • Received Date: 24 Mar 2015
  • Accepted Date: 17 Sep 2015
  • Publish Date: 01 Apr 2016
  • The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14-1.83 Ga Hutuo Group in the North China Craton is a > 10 km thick volcano-sedimentary sequence, including > 5 km thick well-preserved carbonates that were deposited in supra-tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ13C evolution. It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ13Ccarb values preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values (+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event (SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.

     

  • loading
  • Bai, J., 1986. The Early Precambrian Geology of Wutaishan. Tianjin Science and Technology Press, Tianjin. 475 (in Chinese with English Abstract)
    Baker, A. J., Fallick, A. E., 1989a. Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water. 337: 352-354
    Baker, A. J., Fallick, A. E., 1989b. Heavy Carbon in Two-Billion-Year-Old Marbles from Lofoten-Vesterȧlen, Norway: Implications for the Precambrian Carbon Cycle. Geochimica et Cosmochimica Acta, 53: 1111-1115 doi: 10.1016/0016-7037(89)90216-0
    Bathurst, R. G., 1972. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology. Elsevier, Amsterdam. 658 http://www.sciencedirect.com/science/article/pii/0012825273900883
    Bekker, A., Karhu, J. A., Eriksson, K. A., et al., 2003. Chemostratigraphy of Paleoproterozoic Carbonate Successions of the Wyoming Craton: Tectonic Forcing of Biogeochemical Change? Precambrian Research, 120: 279-325 doi: 10.1016/S0301-9268(02)00164-X
    Bekker, A., Karhu, J. A., Kaufman, A. J., 2006. Carbon Isotope Record for the Onset of the Lomagundi Carbon Isotope Excursion in the Great Lakes Area, North America. Precambrian Research, 148: 145-180 doi: 10.1016/j.precamres.2006.03.008
    Bekker, A., Kaufman, A. J., Karhu, J. A., et al., 2005. Evidence for Paleoproterozoic Cap Carbonates in North America. Precambrian Research, 137: 167-206 doi: 10.1016/j.precamres.2005.03.009
    Bickle, M. J., Chapman, H. J., Ferry, J. M., et al., 1997. Fluid Flow and Diffusion in the Waterville Limestone, South-Central Maine: Constraints from Strontium, Oxygen and Carbon Isotope Profiles. Journal of Petrology, 38: 1489-1512 doi: 10.1093/petroj/38.11.1489
    Bickle, M. J., Chapman, H. J., Wickham, S. M., et al., 1995. Strontium and Oxygen Isotope Profiles Across Marble-Silicate Contacts, Lizzies Basin, East Humboldt Range, Nevada: Constraints on Metamorphic Permeability Contrasts and Fluid Flow. Contributions to Mineralogy and Petrology, 121: 400-413 doi: 10.1007/s004100050105
    Boulvais, P., Fourcade, S., Gruau, G., et al., 1998. Persistence of Pre-Metamorphic C and O isotopic Signatures in Marbles Subject to Pan-African Granulite-facies Metamorphism and U-Th Mineralization (Tranomaro, Southeast Madagascar). Chemical Geology, 150: 247-262 doi: 10.1016/S0009-2541(98)00062-X
    Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26: 555-558 doi: 10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2
    Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock-forming Minerals (Second edition). Longman, London. 696
    Dongye, M., 1989. The Early-Middle Precambrian Phosphate Deposits in North China. Journal of Changchun University of Earth Science, 19: 181-186 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ198902011.htm
    Du, L. L., Yang, C. H., Ren, L. D., et al., 2009. Petrology, Geochemistry and Petrogenesis of the Metabasalts of the Hutuo Group, Wutai Mountains, Shanxi, China. Geological Bulletin of China, 28: 867-876 http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200907008.htm
    Du, L., Yang, C., Guo, J., et al., 2010. The Age of the Base of the Paleoproterozoic Hutuo Group in the Wutai Mountains Area, North China Craton: SHRIMP Zircon U-Pb Dating of Basaltic Andesite. Chinese Science Bulletin, 55: 1782-1789 doi: 10.1007/s11434-009-3611-8
    Du, L., Yang, C., Wang, W., et al., 2011. The Re-examination of the Age and Stratigraphic Subdivision of the Hutuo Group in the Wutai Mountains Area, North China Craton: Evidences from Geology and Zircon U-Pb Geochronology. Acta Petrologica Sinica, 27: 1037-1055 http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252022294.html
    Du, L., Yang, C., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2137 Ma Huangjinshan A-type Granite Porphyry in the Wutai area. Journal of Asian Earth Sciences, 72: 190-202 doi: 10.1016/j.jseaes.2012.11.040
    Emrich, K., Ehhalt, D. H., Vogel, J. C., 1970. Carbon Isotope Fractionation during the Precipitation of Calcium Carbonate. Earth and Planetary Science Letters, 8: 363-371 doi: 10.1016/0012-821X(70)90109-3
    Gaucher, C., Sial, A. N., Ferreira, V. P., et al., 2007. Chemostratigraphy of the Cerro Victoria Formation (Lower Cambrian, Uruguay): Evidence for Progressive Climate Stabilization across the Precambrian-Cambrian Boundary. Chemical Geology, 237: 28-46 doi: 10.1016/j.chemgeo.2006.06.014
    Guerrera, A., Peacock, S. M., Knauth, L. P., 1997. Large 18O and 13C Depletions in Greenschist Facies Carbonate Rocks, Western Arizona. Geology, 25: 943-946 doi: 10.1130/0091-7613(1997)025<0943:LOACDI>2.3.CO;2
    Guo, H., Du, Y., Kah, L. C., et al., 2013. Isotopic Composition of Organic and Inorganic Carbon from the Mesoproterozoic Jixian Group, North China: Implications for Biological and Oceanic Evolution. Precambrian Research, 224: 169-183 doi: 10.1016/j.precamres.2012.09.023
    Guo, J., Ren, L., Bai, J., 2011. Analysis of the Sedimentary Setting of the Paleoproterozoic Hutuo Group in the Wutaishan Area: Foreland Basin or Intracontinental Rift Basin? Earth Science Frontiers, 18: 211-220
    Hoffman, P. F., 2013. The Great Oxidation and a Siderian Snowball Earth: MIF-S Based Correlation of Paleoproterozoic Glacial Epochs. Chemical Geology, 362: 143-156 doi: 10.1016/j.chemgeo.2013.04.018
    Hou, G., Li, J., Liu, Y., et al., 2005. Late Paleoproterozoic Extensional Events in North China Craton: Aulacogen and dyke Swarms. Progress in Natural Science, 15: 1366-1373 (in Chinese)
    Hudson, J. D., 1977. Stable Isotopes and Limestone Lithification. Journal of the Geological Society, 133: 637-660 doi: 10.1144/gsjgs.133.6.0637
    Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161: 37-57 doi: 10.1016/S0009-2541(99)00080-7
    Kah, L. C., Sherman, A. G., Narbonne, G. M., et al., 1999. δ13C Stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for Regional Lithostratigraphic Correlations. Canadian Journal of Earth Sciences, 36: 313-332 doi: 10.1139/e98-100
    Karhu, J. A., Holland, H. D., 1996. Carbon Isotopes and the Rise of Atmospheric Oxygen. Geology, 24: 867-870 doi: 10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2
    Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27-49 doi: 10.1016/0301-9268(94)00070-8
    Kong, F., Yuan, X., Zhou, C., 2011. Paleoproterozoic Glaciation: Evidence from Carbon Isotope Record of the Hutuo Group, Wutai Mountain Area of Shanxi Province, China. Chinese Science Bulletin, 56: 2922-2930 doi: 10.1007/s11434-011-4639-0
    Kump, L. R., Junium, C., Arthur, M. A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694-1696 doi: 10.1126/science.1213999
    Kusky, T.M., Li, J., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22: 383-397 doi: 10.1016/S1367-9120(03)00071-3
    Lai, Y., Chen, C., Tang, H., 2012. Paleoproterozoic Positive δ13C Excursion in Henan, China. Geomicrobiology Journal, 29: 287-298 doi: 10.1080/01490451.2011.630713
    Lewis, S., Holness, M., Graham, C., 1998. Ion Microprobe Study of Marble from Naxos, Greece: Grain-Scale Fluid Pathways and Stable Isotope Equilibration during Metamorphism. Geology, 26: 935-938 doi: 10.1130/0091-7613(1998)026<0935:IMSOMF>2.3.CO;2
    Liu, C., Zhao, G., Sun, M., et al., 2011. U-Pb and Hf isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications. Gondwana Research, 20: 106-121 doi: 10.1016/j.gr.2010.11.016
    Liu, C., Zhao, G., Sun, M., et al., 2012. Detrital Zircon U-Pb Dating, Hf Isotopes and Whole-Rock Geochemistry from the Songshan Group in the Dengfeng Complex: Constraints on the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 192: 1-15 http://www.sciencedirect.com/science/article/pii/S0301926811002142
    Luo, G., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for 1700 to 1300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232 doi: 10.1016/j.epsl.2014.05.020
    Maheshwari, A., Sial, A. N., Gaucher, C., et al., 2010. Global Nature of the Paleoproterozoic Lomagundi Carbon Isotope Excursion: A Review of Occurrences in Brazil, India, and Uruguay. Precambrian Research, 182: 274-299 doi: 10.1016/j.precamres.2010.06.017
    Martin, A. P., Condon, D. J., Prave, A. R., et al., 2013a. A Review of Temporal Constraints for the Palaeoproterozoic Large, Positive Carbonate Carbon Isotope Excursion (the Lomagundi-Jatuli Event). Earth-Science Reviews, 127: 242-261 doi: 10.1016/j.earscirev.2013.10.006
    Martin, A. P., Condon, D. J., Prave, A. R., et al., 2013b. Dating the Termination of the Palaeoproterozoic Lomagundi-Jatuli Carbon Isotopic Event in the North Transfennoscandian Greenstone Belt. Precambrian Research, 224: 160-168 doi: 10.1016/j.precamres.2012.09.010
    Melezhik, V. A., Fallick, A. E., 1996. A Widespread Positive δ13Ccarb Anomaly at Around 2.33-2.06 Ga on the Fennoscandian Shield: a Paradox? Terra Nova, 8: 141-157 doi: 10.1111/j.1365-3121.1996.tb00738.x
    Melezhik, V. A., Fallick, A. E., 2003. δ13C and δ18O Variations in Primary and Secondary Carbonate Phases: Several Contrasting Examples from Palaeoproterozoic 13C-Rich Metamorphosed Dolostones. Chemical Geology, 201: 213-228 doi: 10.1016/j.chemgeo.2003.07.003
    Melezhik, V. A., Fallick, A. E., 2010. On the Lomagundi-Jatuli Carbon Isotopic Event: The Evidence from the Kalix Greenstone Belt, Sweden. Precambrian Research, 179: 165-190 doi: 10.1016/j.precamres.2010.03.002
    Melezhik, V. A., Fallick, A. E., Filippov, M. M., et al., 1999a. Karelian Shungite-an Indication of 2.0-Ga-old Metamorphosed Oil-Shale and Generation of Petroleum: Geology, Lithology and Geochemistry. Earth-Science Reviews, 47: 1-40 doi: 10.1016/S0012-8252(99)00027-6
    Melezhik, V. A., Fallick, A. E., Medvedev, P. V., et al., 1999b. Extreme 13Ccarb Enrichment in ca. 2.0 Ga Magnesite-Stromatolite-Dolomite-'Red Beds' Association in a Global Context: a Case for the World-Wide Signal Enhanced by a Local Environment. Earth-Science Reviews, 48: 71-120 doi: 10.1016/S0012-8252(99)00044-6
    Melezhik, V. A., Fallick, A. E., Rychanchik, D. V., et al., 2005a. Palaeoproterozoic Evaporites in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the δ13C Excursion. Terra Nova, 17: 141-148 doi: 10.1111/j.1365-3121.2005.00600.x
    Melezhik, V. A., Gorokhov, I. M., Fallick, A. E., et al., 2001. Strontium and Carbon Isotope Geochemistry Applied to Dating of Carbonate Sedimentation: an Example from High-Grade Rocks of the Norwegian Caledonides. Precambrian Research, 108: 267-292 doi: 10.1016/S0301-9268(01)00135-8
    Melezhik, V., Fallick, A. E., Pokrovsky, B. G., 2005b. Enigmatic Nature of Thick Sedimentary Carbonates Depleted in 13C beyond the Canonical Mantle Value: the Challenges to Our Understanding of the Terrestrial Carbon Cycle. Precambrian Research, 137: 131-165 doi: 10.1016/j.precamres.2005.03.010
    Melezhik, V., Prave, A., Fallick, A., et al., 2013. Reading the Archive of Earth's Oxygenation: Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia. Springer, Heidelberg. 490 http://eprints.gla.ac.uk/70772/
    Miao, P. S., Zhang, Z. F., Zhang, J. Z., et al., 1999. Paleoproterozoic Stratigraphic Sequence in the Wutai Mountain Area. Regional Geology of China, 18: 405-413 (in Chinese with English Abstract) http://www.researchgate.net/publication/303960793_Paleoproterozoic_Stratigraphic_Sequence_in_the_Wutai_Mountain_Area
    Nafi, M., Fei, Q., Yang, X. H., 2004. Type of Sandstone and Source of Carbonate Cement in the Kongdian Formation (Upper Part), South Slope of the Dongying Depression, East China. Journal of Applied Sciences, 4: 235-241 doi: 10.3923/jas.2004.235.241
    Papineau, D., 2010. Global Biogeochemical Changes at both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10: 165-181 doi: 10.1089/ast.2009.0360
    Papineau, D., De Gregorio, B. T., Stroud, R.M., et al., 2010. Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland Ⅱ: Isotopic and Chemical Compositions and Comparison with Paleoproterozoic Banded iron Formations. Geochimica et Cosmochimica Acta, 74: 5884-5905 doi: 10.1016/j.gca.2010.07.002
    Papineau, D., Purohit, R., Fogel, M.L., et al., 2013. High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere. Earth and Planetary Science Letters, 362: 225-236 doi: 10.1016/j.epsl.2012.11.050
    Schidlowski, M., Eichmann, R., Junge, C.E., 1976. Carbon Isotope Geochemistry of the Precambrian Lomagundi Carbonate Province, Rhodesia. Geochimica et Cosmochimica Acta, 40: 449-455 doi: 10.1016/0016-7037(76)90010-7
    Tang, H., Chen, Y., Wu, G., et al., 2011. Paleoproterozoic Positive δ13Ccarb Excursion in the Northeastern Sino-Korean Craton: Evidence of the Lomagundi Event. Gondwana Research, 19: 471-481 doi: 10.1016/j.gr.2010.07.002
    Valley, J.W., 1986. Stable Isotope Geochemistry of Metamorphic Rocks, Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 445-489 http://www.researchgate.net/publication/247635080_Stable_isotope_geochemistry_of_metamorphic_rocks._In
    Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique. Stable Isotopes in Sedimentary Geology. SEPM Short Course No. 10. Society for Sedimentary Geology, Dallas
    Wan, Y., Miao, P., Liu, D., et al., 2010. Formation Ages and SourceRegions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons: Resolution of debates over their Stratigraphic Relationships. Chinese Science Bulletin, 55: 1278-1284 doi: 10.1007/s11434-009-0615-3
    Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3
    Wang, R., 1997. A Primary Discussion on Rb-Sr and Sm-Nd Isotopic Systems of Basaltic Rocks of Hutuo Group of Early Proterozoic, Shanxi. Progress in Precambrian Research, 20: 35-42 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ199701005.htm
    Wilde, S. A., Zhao, G., Wang, K., et al., 2004. First SHRIMP Zircon U-Pb Ages for Hutuo Group in Wutaishan: Further Evidence for Palaeoproterozoic Amalgamation of North China Craton. Chinese Science Bulletin, 49: 83-90 (in Chinese) doi: 10.1007/BF02901747
    Wu, J., Liu, D., Jin, L., 1986. The Zircon U-Pb Age of Metamorphosed Basic Volcanic Lavas from the Hutuo Group in the Wutai Mountain area, Shanxi Province. Geological Review, 32: 178-185 (in Chinese with English abstract) http://www.researchgate.net/publication/313695638_The_zircon_U-Pb_age_of_metamorphosed_basic_volcanic_lavas_from_the_Hutuo_Group_in_the_Wutai_Mt_area_Shanxi_Province
    Zhao, D., 1982. The Age and Genesis of Phosphorous Deposits of the Dongjiao Type. Chinese Journal of Geology, (4): 386-394 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198204005.htm
    Zhao, G., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202 doi: 10.1016/j.precamres.2004.10.002
    Zhao, G., Wilde, S. A., Cawood, P. A., et al., 1999. Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications. Tectonophysics, 310: 37-53 doi: 10.1016/S0040-1951(99)00152-3
    Zhong, H., Ma, Y., 1997. Carbon Isotope Stratigraphy of Dolomites in the Early Proterozoic Succession, North China. Geological Magazine, 134: 763-770 doi: 10.1017/S0016756897007577
    Zhu, S., 1982. An Outline of Studies on the Precambrian Stromatolites of China. Precambrian Research, 18: 367-396 doi: 10.1016/0301-9268(82)90009-2
    Zhu, S., Chen, H., 1992. Characteristics of Palaeoproterozoic Stromatolites in China. Precambrian Research, 57: 135-163 doi: 10.1016/0301-9268(92)90097-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(854) PDF downloads(413) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return